Construction of a prognostic model for hepatocellular carcinoma based on immune and metabolism related genes and drug prediction
-
摘要:目的
构建基于免疫和代谢相关基因的肝细胞癌(HCC)预后预测模型,分析HCC患者的预后免疫反应,并通过药物敏感性分析筛选治疗HCC的潜在药物。
方法从癌症基因组图谱(TCGA)数据库获得HCC表达谱数据及临床数据,从Immport数据库获取免疫相关基因列表; 采用Perl语言从分子签名数据库(MSig DB)提取代谢相关通路基因集,通过差异分析和共表达分析找到共表达相关基因; 采用单因素Cox回归分析、最小绝对收缩选择算子(LASSO)回归分析和多因素Cox回归分析筛选预后相关基因并构建HCC的风险预后模型,计算所有HCC患者样本的风险评分。以风险评分的中位值为临界值,通过风险曲线、Kaplan-Meier生存分析、受试者工作特征(ROC)曲线、独立预后分析、列线图评估预后模型的可靠性。分析风险评分与通路富集分析、免疫细胞浸润的相关性。采用药物敏感性分析获取HCC潜在治疗药物。
结果获得5个有独立预后价值的免疫与代谢基因,构建了一个基于免疫和代谢基因的预后模型。生存分析显示,总数据集、训练组和验证组中,低风险组的生存率均高于高风险组,差异有统计学意义(P < 0.05)。训练组的预后模型1、3、5年的ROC曲线的曲线下面积分别为0.780、0.699、0.706。Cox回归分析显示分级和风险评分可以作为HCC的独立预后影响因素(P < 0.05), 一致性指数为0.734(95%CI: 0.669~0.798),模型性能较好。免疫细胞浸润结果显示,静息NK细胞、单核细胞、M0巨噬细胞、M1巨噬细胞在高低风险组中存在显著差异(P < 0.05)。药物敏感性分析筛选得到12种可能对HCC患者具有潜在治疗效果的药物(P < 0.01)。
结论基于5个免疫和代谢基因构建的HCC预后模型的预测性能较好,可以作为评价预后的新指标; 筛选得到的12种药物对HCC具有潜在疗效。
Abstract:ObjectiveTo construct a prognostic prediction model for hepatocellular carcinoma (HCC) based on immune and metabolism related genes, analyze the prognostic immune response of HCC patients, and screen potential drugs for HCC treatment through drug sensitivity analysis.
MethodsHCC expression profiling and clinical data were obtained from The Cancer Genome Atlas (TCGA) database, and a list of immune-related genes was obtained from the Immport database; the Perl language was used to extract metabolism-related pathway gene sets from the Molecular Signatures Database(MSig DB), and co-expression related genes were found through differential analysis and co-expression analysis; the univariate Cox regression analysis, the least absolute shrinkage and selection operator (LASSO) regression analysis, and multivariate Cox regression analysis were used to screen prognosis-related genes and construct a risk prognosis model for HCC, and risk scores for all HCC samples were calculated. Using the median risk score as the critical value, the reliability of the prognostic model was evaluated through risk curves, Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves, independent prognostic analysis, and Nomograms. The correlations between risk scores and pathway enrichment analysis as well as immune cell infiltration were analyzed. Drug sensitivity analysis was used to identify potential therapeutic drugs for HCC.
ResultsFive immune and metabolic genes with independent prognostic value were obtained, and a prognostic model based on immune and metabolic genes was constructed. Survival analysis showed that in the total dataset, training group and validation group, the survival rate of the low-risk group was significantly higher than that ofthe high-risk group (P < 0.05). The areas under the ROC curves of the prognostic model for the training group at 1, 3 and 5 years were 0.780, 0.699 and 0.706 respectively. Cox regression analysis showed that grading and risk score could be used as independent prognostic factors for HCC (P < 0.05), with a concordance index of 0.734 (95%CI, 0.669 to 0.798), indicating good model performance. Immune cell infiltration results showed significant differences in resting NK cells, monocytes, M0 macrophages, and M1 macrophages between the high-risk and low-risk groups (P < 0.05). Drug sensitivity analysis screened 12 drugs that may have potential therapeutic effects in HCC patients (P < 0.01).
ConclusionThe prognostic model of HCC based on five immune and metabolic genes has good predictive performance, and can be used as a new indicator for prognosis evaluation; the 12 drugs screened out have potential efficacy for HCC.
-
-
表 1 总数据集、验证组与训练组临床资料比较[n(%)]
临床数据 分类 总数据集(n=370) 验证组(n=111) 训练组(n=259) P 年龄 ≤65岁 232(62.70) 67(60.36) 165(63.71) 0.622 >65岁 138(37.30) 44(39.64) 94(36.29) 分级 G1 55(14.86) 13(11.71) 42(16.22) 0.582 G2 177(47.84) 53(47.75) 124(47.88) G3 121(32.70) 38(34.24) 83(32.05) G4 12(3.24) 5(4.50) 7(2.70) 未分级 5(1.36) 2(1.80) 3(1.15) 分期 Ⅰ期 171(46.22) 57(51.35) 114(44.02) 0.407 Ⅱ期 85(22.97) 21(18.92) 64(24.71) Ⅲ期 85(22.97) 22(19.82) 63(24.32) Ⅳ期 5(1.35) 1(0.90) 4(1.54) 未分期 24(6.49) 10(9.01) 14(5.41) 表 1 总数据集、验证组与训练组临床资料比较[n(%)]
临床数据 分类 总数据集(n=370) 验证组(n=111) 训练组(n=259) P 年龄 ≤65岁 232(62.70) 67(60.36) 165(63.71) 0.622 >65岁 138(37.30) 44(39.64) 94(36.29) 分级 G1 55(14.86) 13(11.71) 42(16.22) 0.582 G2 177(47.84) 53(47.75) 124(47.88) G3 121(32.70) 38(34.24) 83(32.05) G4 12(3.24) 5(4.50) 7(2.70) 未分级 5(1.36) 2(1.80) 3(1.15) 分期 Ⅰ期 171(46.22) 57(51.35) 114(44.02) 0.407 Ⅱ期 85(22.97) 21(18.92) 64(24.71) Ⅲ期 85(22.97) 22(19.82) 63(24.32) Ⅳ期 5(1.35) 1(0.90) 4(1.54) 未分期 24(6.49) 10(9.01) 14(5.41) 表 2 多因素Cox回归纳入的预后基因
基因 系数 P Exp(B) Exp(B)的95%CI 下限 上限 FABP6 0.228 0.008 1.256 0.974 1.618 MAPT 0.507 0.001 1.66 1.242 2.219 GAL 0.315 0.007 1.37 1.089 1.725 PPAT 0.581 0.001 1.788 1.266 2.526 IMPDH1 0.324 0.005 1.383 1.105 1.732 表 2 多因素Cox回归纳入的预后基因
基因 系数 P Exp(B) Exp(B)的95%CI 下限 上限 FABP6 0.228 0.008 1.256 0.974 1.618 MAPT 0.507 0.001 1.66 1.242 2.219 GAL 0.315 0.007 1.37 1.089 1.725 PPAT 0.581 0.001 1.788 1.266 2.526 IMPDH1 0.324 0.005 1.383 1.105 1.732 -
[1] LIU Y Y, LIU L J, ZHOU Y, et al. CKLF1 enhances inflammation-mediated carcinogenesis and prevents doxorubicin-induced apoptosis via IL6/STAT3 signaling in HCC[J]. Clin Cancer Res, 2019, 25(13): 4141-4154. doi: 10.1158/1078-0432.CCR-18-3510
[2] HAN J Y, WANG Y H, ZHOU H C, et al. Integrated bioinformatics and experimental analysis identified TRIM28 a potential prognostic biomarker and correlated with immune infiltrates in liver hepatocellular carcinoma[J]. Comput Math Methods Med, 2022, 2022: 6267851.
[3] HU B, LI H, GUO W, et al. Establishment of a hepatocellular carcinoma patient-derived xenograft platform and its application in biomarker identification[J]. Int J Cancer, 2020, 146(6): 1606-1617. doi: 10.1002/ijc.32564
[4] HONG Y, LIEW S C, THEAN L F, et al. Human colorectal cancer initiation is bidirectional, and cell growth, metabolic genes and transporter genes are early drivers of tumorigenesis[J]. Cancer Lett, 2018, 431: 213-218. doi: 10.1016/j.canlet.2018.06.005
[5] WANG B L, ZHANG C W, WANG L, et al. Lipidomics reveal aryl hydrocarbon receptor (Ahr)-regulated lipid metabolic pathway in alpha-naphthyl isothiocyanate (ANIT)-induced intrahepatic cholestasis[J]. Xenobiotica, 2019, 49(5): 591-601. doi: 10.1080/00498254.2018.1467065
[6] WEI Q Y, XU Y M, LAU A T Y. Recent progress of nanocarrier-based therapy for solid malignancies[J]. Cancers, 2020, 12(10): 2783. doi: 10.3390/cancers12102783
[7] IWATA T, INOUE K, NISHIYAMA N, et al. Factors predicting early postoperative liver cirrhosis-related complications after lung cancer surgery in patients with liver cirrhosis[J]. Interact Cardiovasc Thorac Surg, 2007, 6(6): 720-730. doi: 10.1510/icvts.2007.162487
[8] YIN B B, WANG X, YUAN F, et al. Research progress on the effect of gut and tumor microbiota on antitumor efficacy and adverse effects of chemotherapy drugs[J]. Front Microbiol, 2022, 13: 899111. doi: 10.3389/fmicb.2022.899111
[9] WERNER J D, FRANGAKIS C, RUCK J M, et al. Neoadjuvant transarterial chemoembolization improves survival after liver transplant in patients with hepatocellular carcinoma[J]. Exp Clin Transplant, 2019, 17(5): 638-643.
[10] VAZIRI F, COLQUHOUN S, WAN Y Y. Hepatocellular carcinoma immunotherapy: The impact of epigenetic drugs and the gut microbiome[J]. Liver Res, 2020, 4(4): 191-198. doi: 10.1016/j.livres.2020.10.001
[11] 刘格良, 陈熙勐, 张钧栋, 等. 基于代谢相关基因的多发性骨髓瘤预后模型的构建[J]. 中国实验血液学杂志, 2023, 9(1): 162-169. [12] 李威材, 秦刚, 何凯毅, 等. 骨肉瘤双硫死亡相关lncRNA预后预测模型的构建与验证[J]. 中国肿瘤临床, 2023, 50(15): 778-785. doi: 10.12354/j.issn.1000-8179.2023.20230320 [13] 胡超扬, 曹晓华, 刘格良, 等. 基于唾液酸化相关长链非编码RNA构建卵巢癌预后模型的研究[J]. 实用临床医药杂志, 2023, 27(16): 29-36, 42. doi: 10.7619/jcmp.20232031 [14] LI H, SHI M J, REN K Y, et al. Visual Omics: a web-based platform for omics data analysis and visualization with rich graph-tuning capabilities[J]. Bioinformatics, 2023, 39(1): btac777. doi: 10.1093/bioinformatics/btac777
[15] LIU Z J, MI M, LI X Q, et al. A lncRNA prognostic signature associated with immune infiltration and tumour mutation burden in breast cancer[J]. J Cell Mol Med, 2020, 24(21): 12444-12456. doi: 10.1111/jcmm.15762
[16] WU Z W, LU Z X, LI L, et al. Identification and validation of ferroptosis-related LncRNA signatures as a novel prognostic model for colon cancer[J]. Front Immunol, 2021, 12: 783362.
[17] 李渊, 李卓阳, 刘格良, 等. 基于内质网应激相关lncRNA的肾透明细胞癌预后模型构建与药物预测[J]. 现代泌尿外科杂志, 2024, 29(2): 158-167. [18] WHITESIDE T L. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention[J]. Semin Cancer Biol, 2006, 16(1): 3-15. doi: 10.1016/j.semcancer.2005.07.008
[19] ZAHAVI D J, WEINER L M. Tumor mechanisms of resistance to immune attack[J]. Prog Mol Biol Transl Sci, 2019, 164: 61-100.
[20] COFFEY N J, SIMON M C. Metabolic alterations in hereditary and sporadic renal cell carcinoma[J]. Nat Rev Nephrol, 2024, 20(4): 233-250. doi: 10.1038/s41581-023-00800-2
[21] ZHOU Z J, LI J H, OUSMANE D, et al. Metabolic reprogramming directed by super-enhancers in tumors: an emerging landscape[J]. Mol Ther, 2024, 32(3): 572-579. doi: 10.1016/j.ymthe.2024.02.003
[22] ZHANG Y Q, ZHAO X T, DENG L L, et al. High expression of FABP4 and FABP6 in patients with colorectal cancer[J]. World J Surg Oncol, 2019, 17(1): 171. doi: 10.1186/s12957-019-1714-5
[23] WANG B, NIE C H, XU J, et al. Bigelovin inhibits hepatocellular carcinoma cell growth and metastasis by regulating the MAPT-mediated Fas/FasL pathway[J]. Neoplasma, 2023, 70(2): 208-215. doi: 10.4149/neo_2023_221125N1132
[24] SU W J, LU P Z, WU Y, et al. Identification of key genes in purine metabolism as prognostic biomarker for hepatocellular carcinoma[J]. Front Oncol, 2020, 10: 583053.
[25] LIU C D, ZHANG W L, ZHOU X H, et al. IMPDH1, a prognostic biomarker and immunotherapy target that correlates with tumor immune microenvironment in pan-cancer and hepatocellular carcinoma[J]. Front Immunol, 2022, 13: 983490. doi: 10.3389/fimmu.2022.983490
[26] FARHA M, JAIRATH N K, LAWRENCE T S, et al. Characterization of the tumor immune microenvironment identifies M0 macrophage-enriched cluster as a poor prognostic factor in hepatocellular carcinoma[J]. JCO Clin Cancer Inform, 2020, 4: 1002-1013.
[27] ROY A M, IYER R, CHAKRABORTY S. The extracellular matrix in hepatocellular carcinoma: Mechanisms and therapeutic vulnerability[J]. Cell Rep Med, 2023, 4(9): 101170. doi: 10.1016/j.xcrm.2023.101170
[28] ZAHRAN A M, ABDEL-RAHIM M H, REFAAT A, et al. Circulating hematopoietic stem cells, endothelial progenitor cells and cancer stem cells in hepatocellular carcinoma patients: contribution to diagnosis and prognosis[J]. Acta Oncol, 2020, 59(1): 33-39. doi: 10.1080/0284186X.2019.1657940
[29] SEO J, JEONG D W, PARK J W, et al. Fatty-acid-induced FABP5/HIF-1 reprograms lipid metabolism and enhances the proliferation of liver cancer cells[J]. Commun Biol, 2020, 3(1): 638. doi: 10.1038/s42003-020-01367-5
[30] BRUNS H, PETRULIONIS M, SCHULTZE D, et al. Glycine inhibits angiogenic signaling in human hepatocellular carcinoma cells[J]. Amino Acids, 2014, 46(4): 969-976. doi: 10.1007/s00726-013-1662-2
[31] WENG M T, TUNG T H, LEE J H, et al. Enhancer of rudimentary homolog regulates DNA damage response in hepatocellular carcinoma[J]. Sci Rep, 2015, 5: 9357. doi: 10.1038/srep09357
[32] LIU Q, TAO Y H, BAI R Z, et al. Zoledronic acid inhibits growth of hepatocellular carcinoma cells in vitro and in vivo[J]. Chin Med J, 2013, 126(8): 1486-1490. doi: 10.3760/cma.j.issn.0366-6999.20122385
[33] CHEN Y F, CHEN X, DING X J, et al. Afatinib, an EGFR inhibitor, decreases EMT and tumorigenesis of Huh-7 cells by regulating the ERK-VEGF/MMP9 signaling pathway[J]. Mol Med Rep, 2019, 20(4): 3317-3325.
[34] XU H W, CHEN K F, SHANG R Z, et al. Alpelisib combination treatment as novel targeted therapy against hepatocellular carcinoma[J]. Cell Death Dis, 2021, 12(10): 920. doi: 10.1038/s41419-021-04206-5
[35] LIAO Y, HU K J, LIU W W, et al. Bortezomib inhibits hepatocellular carcinoma via the Hippo-Yes-associated protein signalling pathway[J]. Basic Clin Pharmacol Toxicol, 2023, 132(4): 297-311. doi: 10.1111/bcpt.13832
[36] WANG C J, GUO D K, YOU T G, et al. Inhibition of hepatocellular carcinoma by fulvestrant involves the estrogen receptor α and Wnt pathways in vitro and in patients[J]. Mol Med Rep, 2014, 10(6): 3125-3131. doi: 10.3892/mmr.2014.2595
[37] XU L, ZHU Y R, SHAO J J, et al. Dasatinib synergises with irinotecan to suppress hepatocellular carcinoma via inhibiting the protein synthesis of PLK1[J]. Br J Cancer, 2017, 116(8): 1027-1036. doi: 10.1038/bjc.2017.55
[38] HUANG Q X, HE S S, ZHAN D A. Osimertinib is a dual inhibitor of hepatocellular carcinoma and angiogenesis in an EGFR-independent manner, and synergizes with venetoclax[J]. J Cancer Res Clin Oncol, 2023, 149(12): 10727-10735. doi: 10.1007/s00432-023-04926-5
[39] CAMERINI A, BANNA G L, CINIERI S, et al. Metronomic oral vinorelbine for the treatment of advanced non-small cell lung cancer: a multicenter international retrospective analysis[J]. Clin Transl Oncol, 2019, 21(6): 790-795. doi: 10.1007/s12094-018-1989-y
-
期刊类型引用(10)
1. 李玉瑾,范红,赵亚,高红. 老年综合评估护理对老年不稳定型心绞痛患者生活质量及心脏不良事件发生率的影响. 临床研究. 2021(04): 164-165 . 百度学术
2. 王琼. 优质护理模式在心血管内科护理工作中的应用. 中国医药科学. 2021(07): 166-168 . 百度学术
3. 郭利芳. 基于移动管理系统的延续性护理在不稳定型心绞痛患者中的应用. 现代诊断与治疗. 2021(09): 1508-1510 . 百度学术
4. 张帅. 老年冠心病不稳定性心绞痛护理方法以及价值探讨. 智慧健康. 2021(17): 111-113 . 百度学术
5. 李云云,郑燕,常莉,申玲利,李婕,李萌. 优质中西医护理干预在不稳定型心绞痛合并高血压患者中的应用效果. 临床医学研究与实践. 2021(21): 152-155 . 百度学术
6. 刘光杰. 无缝隙护理对不稳定型心绞痛患者负面情绪及不良事件发生率的影响. 中国当代医药. 2020(05): 235-238 . 百度学术
7. 秦凤霞. 给予不稳定型心绞痛患者优质护理干预的效果评估. 中国医药指南. 2020(32): 159-160 . 百度学术
8. 梁黎明. 优质护理服务在冠心病心绞痛护理中的应用. 中西医结合心血管病电子杂志. 2019(20): 95+98 . 百度学术
9. 吴荣桢. 不稳定型心绞痛护理中优质护理应用效果观察. 心血管外科杂志(电子版). 2019(03): 240 . 百度学术
10. 朴思静,李艳. 中医护理干预在冠心病心绞痛疗效观察及有效性分析. 实用中医内科杂志. 2019(10): 88-90 . 百度学术
其他类型引用(0)