生酮饮食用于心脏疾病的研究综述

苏晓明, 钱玉良, 严冬

苏晓明, 钱玉良, 严冬. 生酮饮食用于心脏疾病的研究综述[J]. 实用临床医药杂志, 2024, 28(9): 139-143, 148. DOI: 10.7619/jcmp.20234160
引用本文: 苏晓明, 钱玉良, 严冬. 生酮饮食用于心脏疾病的研究综述[J]. 实用临床医药杂志, 2024, 28(9): 139-143, 148. DOI: 10.7619/jcmp.20234160
SU Xiaoming, QIAN Yu, YAN Dong. Research progress of the ketogenic diet for treatment of heart diseases[J]. Journal of Clinical Medicine in Practice, 2024, 28(9): 139-143, 148. DOI: 10.7619/jcmp.20234160
Citation: SU Xiaoming, QIAN Yu, YAN Dong. Research progress of the ketogenic diet for treatment of heart diseases[J]. Journal of Clinical Medicine in Practice, 2024, 28(9): 139-143, 148. DOI: 10.7619/jcmp.20234160

生酮饮食用于心脏疾病的研究综述

基金项目: 

全国中医药创新骨干人才培养项目 国中医药人教函[2019]128号

详细信息
    通讯作者:

    严冬, E-mail: yandtcm@sina.com

  • 中图分类号: R459.3;R541;R333

Research progress of the ketogenic diet for treatment of heart diseases

  • 摘要:

    生酮饮食作为新型饮食辅助治疗心脏疾病的研究方向之一, 具有改善危险因素、抑制心室重构、保护心脏等优势。本综述归纳整理生酮饮食对心脏疾病及处于心血管危险因素状态作用的研究成果, 从多角度阐述心脏相关作用机制, 分析其在减少心血管疾病危险因素、治疗心脏相关疾病等方面的积极影响, 总结了生酮饮食的不良反应与禁忌证, 为心脏疾病的预防和治疗提供新思路。

    Abstract:

    As one of the research directions of novel dietary adjuvant treatment for heart diseases, ketogenic diet has the advantages of improving risk factors, inhibiting ventricular remodeling, and protecting the heart. This paper reviews and summarizes the research achievements of the effect of ketogenic diet on heart diseases and cardiovascular risk factors, elaborates the heart-related mechanism from multiple perspectives, analyzes its positive impacts on reducing cardiovascular disease risk factors and treating heart-related diseases, and summarizes the adverse reactions and contraindications of ketogenic diet, so as to provide new ideas for the prevention and treatment of heart diseases.

  • 慢性阻塞性肺疾病(COPD)是临床常见的肺部疾病,其发病率与病死率在全球范围内逐渐递增[1-2]。COPD急性加重期(AECOPD)会引发Ⅱ型呼吸衰竭,与患者肺功能进一步下降及较高的病死率密切相关[3-4]。如何减轻AECOPD合并Ⅱ型呼吸衰竭患者的临床症状、改善其预后,是临床重点关注的问题。目前,在常规对症治疗的基础上联合应用无创机械通气仍是临床治疗AECOPD合并Ⅱ型呼吸衰竭的常见手段,而无创机械通气中不同吸入氧浓度对患者的临床疗效有所差异,有关吸入氧的适宜浓度仍存在争议[5]。血清高迁移率族蛋白B1(HMGB1)、白细胞介素-27(IL-27)在机体炎症反应的发生发展中发挥重要作用,其中HMGB1可在炎症条件下与晚期糖基化终产物受体、Toll样受体结合,启动多条信号通路,放大炎症效应; IL-27表达可诱导CD4+ T细胞增殖,促进多种炎症因子的合成分泌,加重炎症反应,其水平变化与COPD合并Ⅱ型呼吸衰竭患者的病情严重程度、预后密切相关[6-7]。本研究对比了无创机械通气中应用不同吸入氧浓度治疗对AECOPD合并Ⅱ型呼吸衰竭患者的血气指标、血清HMGB1、IL-27水平的影响,旨在为临床选择无创机械通气中合适的吸入氧浓度提供参考。

    选取2020年1月—2022年12月于本院接受无创机械通气治疗的158例AECOPD合并Ⅱ型呼吸衰竭患者为研究对象,依据随机数字表法分为A组(无创机械通气中吸入氧浓度为45%, n=80)和B组(无创机械通气中吸入氧浓度为60%, n=78)。纳入标准: ①诊断符合AECOPD、Ⅱ型呼吸衰竭的诊断标准[8]者; ②均接受无创机械通气治疗者; ③患者性别不限,年龄≥18岁; ④患者知情同意。排除标准: ①既往存在家庭呼吸机使用史患者; ②合并其他类型肺部疾病患者; ③存在口咽部创伤或手术史患者; ④需立即气管插管治疗患者。治疗期间, A组1例患者死亡, 2例患者进入ICU, 1例患者未完成治疗周期脱落; B组2例患者进入ICU。最终纳入统计学分析患者152例, A组、B组各为76例。本研究经医院伦理委员会批准, 2组患者一般临床资料比较,差异无统计学意义(P>0.05)。见表 1

    表  1  2组患者一般临床资料比较(x±s)[n(%)]
    指标 A组(n=76) B组(n=76) t/χ2 P
    性别 39(51.32) 34(44.74) 0.659 0.417
    37(48.68) 42(55.26)
    年龄/岁 57.81±6.29 56.92±5.17 0.953 0.342
    体质量指数/(kg/m2) 23.47±1.29 23.86±1.61 1.648 0.101
    基础疾病 糖尿病 23(30.26) 20(26.32) 0.292 0.589
    高血压 26(34.21) 22(28.95) 0.487 0.485
    吸烟史 37(48.68) 34(44.74) 0.238 0.626
    COPD病程/年 3.62±1.37 3.27±1.26
    下载: 导出CSV 
    | 显示表格

    所有患者入院后均接受止咳化痰、抗炎、抗感染、纠正电解质紊乱等常规对症治疗。沙美特罗替卡松粉吸入剂(舒利迭; 规格: 每揿含沙美特罗25 μg和丙酸氟替卡松250 μg; 注册证号: H20140404; 法国Glaxo Wellcome Production公司), 1吸/次, 2次/d, 连续使用7 d。采用VPAPIII ST-A with QuickNav无创机械通气系统(瑞思迈医疗器械有限公司)行无创机械通气治疗,采用鼻导管或面罩连接呼吸机,通气模式为S/T模式,参数设置: 呼吸频率12~16次/min, 氧流量4~5 L/min, 初始治疗时吸气相正压(IPAP)10 cmH2O, 呼气末正压(EPAP)4 cmH2O, 待患者适应后,调整IPAP为10~20 cmH2O, EPAP为5~10 cmH2O; 1~3次/d, 每次通气3~4 h, 日通气时间≥8 h。A组患者吸入氧浓度为45%, B组患者吸入氧浓度为60%, 2组患者均连续治疗7 d。

    ① 血气指标: 分别于治疗前及治疗后1、7 d取患者股动脉血5 mL, 采用全自动血气分析仪(cobas-b-123型,瑞士罗氏公司)检测患者动脉血氧分压[pa(O2)]、动脉血二氧化碳分压[pa(CO2)]和pH值。②血清HMGB1、IL-27水平检测: 分别于治疗前和治疗后1、7 d取患者空腹肘静脉血5 mL, 采用酶联免疫吸附法检测血清HMGB1、IL-27水平。③并发症: 记录患者治疗期间并发症的发生情况。

    采用SPSS 23.0软件进行数据分析。计量资料以(x±s)表示,组间比较行t检验,组内不同时间点比较行重复测量方差分析; 计数资料以[n(%)]表示,行χ2检验或Fisher精确概率检验。检验水准α=0.05, P < 0.05表示差异有统计学意义。

    治疗7 d后, A组pa(O2)、pH值水平高于B组, pa(CO2)水平低于B组,差异有统计学意义(P < 0.05)。见表 2

    表  2  2组患者治疗前后血气指标比较(x±s)
    指标 时点 A组(n=76) B组(n=76)
    pa(O2)/mmHg 治疗前 53.28±7.52 54.91±6.68
    治疗1 d后 67.24±8.85 65.92±9.03
    治疗7 d后 95.13±8.27* 82.49±9.35
    pa(CO2)/mmHg 治疗前 68.27±8.54 69.63±7.48
    治疗1 d后 53.48±6.65 55.29±7.23
    治疗7 d后 39.79±5.28* 47.31±7.15
    pH值 治疗前 7.23±0.11 7.20±0.15
    治疗1 d后 7.36±0.12 7.33±0.09
    治疗7 d后 7.39±0.05* 7.34±0.07
    pa(O2): 动脉血氧分压; pa(CO2): 动脉血二氧化碳分压。与B组比较, * P < 0.05。
    下载: 导出CSV 
    | 显示表格

    治疗1、7 d后, A组血清HMGB1水平低于B组,差异有统计学意义(P < 0.05)。见表 3

    表  3  2组患者治疗前后血清HMGB1水平比较(x±sμg/L
    组别 高迁移率族蛋白B1
    治疗前 治疗1 d后 治疗7 d后
    A组(n=76) 4.08±1.13 3.25±0.79* 2.14±0.95*
    B组(n=76) 4.12±1.09 3.69±1.03 2.67±0.84
    与B组比较, * P < 0.05。
    下载: 导出CSV 
    | 显示表格

    治疗1、7 d后, A组血清IL-27水平低于B组,差异有统计学意义(P < 0.05)。见表 4

    表  4  2组患者治疗前后血清IL-27水平比较(x±sng/L
    组别 白细胞介素-27
    治疗前 治疗1 d后 治疗7 d后
    A组(n=76) 187.24±39.26 125.31±20.81* 75.49±19.48*
    B组(n=76) 183.57±41.22 157.25±19.62 102.64±15.53
    与B组比较, * P < 0.05。
    下载: 导出CSV 
    | 显示表格

    治疗期间, 2组患者并发症总发生率比较,差异无统计学意义(P>0.05)。见表 5

    表  5  2组患者并发症发生情况比较[n(%)]
    组别 口咽干燥 鼻压伤 胃肠胀气 一过性低氧血症 合计
    A组(n=76) 3(3.95) 2(2.63) 1(1.32) 0 6(7.89)
    B组(n=76) 1(1.32) 2(2.63) 1(1.32) 1(1.32) 5(6.58)
    下载: 导出CSV 
    | 显示表格

    AECOPD患者往往存在反复发作的低氧血症,会使肺小动脉痉挛,血流阻力增加,导致肺动脉血管重塑; 同时,随着肺功能的降低,患者呼吸肌收缩能力下降,易造成二氧化碳潴留,最终引发Ⅱ型呼吸衰竭,进一步增加患者的病死率。无创机械通气可通过减轻气流阻塞、增加动脉血氧饱和度来达到改善通气、缓解呼吸肌疲劳、减轻临床症状的效果。既往临床无创机械通气中多采用高浓度氧吸入治疗,以迅速改善低氧血症。但有研究[9]发现,过量吸入氧会增加呼吸中枢麻痹与继发性肺损伤的风险。无创机械通气中采用何种浓度的吸入氧治疗,尚需进一步研究。

    本研究对比了无创机械通气中应用不同吸入氧浓度对AECOPD合并Ⅱ型呼吸衰竭患者血气指标及血清HMGB1、IL-27水平的影响。HMGB1是调节机体氧化应激及炎症反应的重要非组蛋白,具有启动并维持肺泡上皮细胞瀑布式炎症级联反应的作用,其水平变化与机体炎症反应的发生发展关系密切[10]。本研究发现,治疗1、7 d后, A组血清HMGB1水平显著低于B组,提示在无创机械通气中应用45%吸入氧浓度,可降低AECOPD合并Ⅱ型呼吸衰竭患者血清HMGB1水平,有利于患者机体炎症反应的控制。分析其原因可能是: 无创机械通气可改善患者气道通气状态,在降低气道阻力及患者呼吸肌做功的同时,提高肺泡换气功能,从而改善呼吸状态,减轻肺损伤; 但吸入氧浓度会对肺功能产生一定影响,浓度越高,肺部炎症反应越重,单核细胞合成分泌大量肿瘤坏死因子-α、白细胞介素-6等炎症因子,最终导致血清HMGB1水平升高[11]

    IL-27是由抗原呈递细胞分泌的细胞因子,可介导并激活多种信号级联反应,参与机体Th1细胞免疫应答,促进肿瘤坏死因子-α、干扰素-γ等细胞因子的合成与分泌[12]。一项有关血清IL-27水平与COPD合并Ⅱ型呼吸衰竭关系的分析研究[13]发现, COPD合并Ⅱ型呼吸衰竭患者的血清IL-27水平较单纯COPD患者、健康者显著升高,并与患者肺功能以及病情严重程度相关,认为IL-27参与气道炎症反应。本研究发现,治疗1、7 d后, A组血清IL-27水平显著低于B组,提示在无创机械通气中应用45%吸入氧浓度,可降低AECOPD合并Ⅱ型呼吸衰竭患者的血清IL-27水平,促进患者康复。高吸入氧浓度会诱导血管内皮生长因子信号通路改变,导致肺泡上皮细胞死亡,加重肺部炎症反应,使细胞炎症因子水平显著升高; 而高水平的细胞炎症因子会反过来促进IL-27的合成与分泌,使其水平显著升高[14]

    本研究结果显示,治疗7 d后, A组pa(O2)、pH值水平显著高于B组, pa(CO2)水平显著低于B组,提示采用45%吸入氧浓度的无创机械通气能更好地纠正AECOPD合并Ⅱ型呼吸衰竭患者的缺氧状态,改善其血气指标。COPD患者由于长期处于低氧状态,机体已具备低氧适应性,完全适应当前的低氧状态; 当吸入高浓度、高流量氧气时,可能会破坏机体的低氧适应性“稳态”,加重肺部炎症反应,不利于因呼吸衰竭造成的缺氧状态的改善[15]。研究[5]发现,与60%吸入氧浓度相比,在无创机械通气中应用45%吸入氧浓度能显著改善老年COPD合并呼吸衰竭患者的血氧指标和呼吸状况,并认为45%吸入氧浓度更符合患者机体状态,有利于相关组织正常生理功能的维护。本研究中,2组患者的并发症发生率无显著差异,进一步表明2种吸入氧浓度的安全性相当。但本研究为单中心临床试验,纳入样本量较少,后续研究拟扩大样本量,进一步多角度研究不同吸入氧浓度对AECOPD患者合并Ⅱ型呼吸衰竭的疗效,并对研究结果进行验证。

    综上所述,与60%吸入氧浓度相比, AECOPD合并Ⅱ型呼吸衰竭患者接受吸入氧浓度为45%的无创机械通气治疗可获得更好的临床效果,患者血气指标改善效果更好,血清HMGB1、IL-27水平下降更显著,安全性较高。

  • [1] 阿丽娅, 李子华, 吕金艳, 等. 小分子, 大作为: 酮体D-β羟基丁酸在医疗领域的应用与展望[J]. 生物工程学报, 2022, 38(3): 976-989. https://www.cnki.com.cn/Article/CJFDTOTAL-SHWU202203010.htm
    [2] 江波, 邹大进, 马向华, 等. 生酮饮食干预2型糖尿病中国专家共识(2019年版)[J]. 实用临床医药杂志, 2019, 23(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XYZL201903001.htm
    [3]

    NAKAMURA M, ODANOVIC N, NAKADA Y, et al. Dietary carbohydrates restriction inhibits the development of cardiac hypertrophy and heart failure[J]. Cardiovasc Res, 2021, 117(11): 2365-2376. doi: 10.1093/cvr/cvaa298

    [4]

    GUO Y Z, WANG X W, JIA P, et al. Ketogenic diet aggravates hypertension via NF-κB-mediated endothelial dysfunction in spontaneously hypertensive rats[J]. Life Sci, 2020, 258: 118124. doi: 10.1016/j.lfs.2020.118124

    [5]

    GUO Y Z, ZHANG C, SHANG F F, et al. Ketogenic diet ameliorates cardiac dysfunction via balancing mitochondrial dynamics and inhibiting apoptosis in type 2 diabetic mice[J]. Aging Dis, 2020, 11(2): 229-240. doi: 10.14336/AD.2019.0510

    [6] 刘志强, 崔利德. 生酮饮食对兔心肌缺血再灌注损伤的保护[J]. 职业与健康, 2011, 27(15): 1736-1737. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJK201115028.htm
    [7]

    SNOREK M, HODYC D, SEDIVY V, et al. Short-term fasting reduces the extent of myocardial infarction and incidence of reperfusion arrhythmias in rats[J]. Physiol Res, 2012, 61(6): 567-574.

    [8]

    ZOU Z T, SASAGURI S, RAJESH K G, et al. Dl-3-Hydroxybutyrate administration prevents myocardial damage after coronary occlusion in rat hearts[J]. Am J Physiol Heart Circ Physiol, 2002, 283(5): H1968-H1974. doi: 10.1152/ajpheart.00250.2002

    [9]

    AL-ZAID N S, DASHTI H M, MATHEW T C, et al. Low carbohydrate ketogenic diet enhances cardiac tolerance to global ischaemia[J]. Acta Cardiol, 2007, 62(4): 381-389. doi: 10.2143/AC.62.4.2022282

    [10] 董爱巧, 张晓亮, 林思朴, 等. β-羟基丁酸抑制细胞焦亡减轻心肌缺血再灌注损伤[J]. 心脏杂志, 2022, 34(1): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-XGNZ202201003.htm
    [11]

    TAGGART A K, KERO J, GAN X D, et al. (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G[J]. J Biol Chem, 2005, 280(29): 26649-26652. doi: 10.1074/jbc.C500213200

    [12]

    GUO Y Z, WANG Z, QIN X H, et al. Enhancing fatty acid utilization ameliorates mitochondrial fragmentation and cardiac dysfunction via rebalancing optic atrophy 1 processing in the failing heart[J]. Cardiovasc Res, 2018, 114(7): 979-991. doi: 10.1093/cvr/cvy052

    [13]

    DUDA M K, O'SHEA K M, LEI B, et al. Low-carbohydrate/high-fat diet attenuates pressure overload-induced ventricular remodeling and dysfunction[J]. J Card Fail, 2008, 14(4): 327-335. doi: 10.1016/j.cardfail.2007.11.003

    [14]

    CHONG D Y, GU Y Y, ZHANG T Y, et al. Neonatal ketone body elevation regulates postnatal heart development by promoting cardiomyocyte mitochondrial maturation and metabolic reprogramming[J]. Cell Discov, 2022, 8(1): 106. doi: 10.1038/s41421-022-00447-6

    [15]

    TAN Y Z, LI M, WU G L, et al. Short-term but not long-term high fat diet feeding protects against pressure overload-induced heart failure through activation of mitophagy[J]. Life Sci, 2021, 272: 119242. doi: 10.1016/j.lfs.2021.119242

    [16]

    JI L W, HE Q Q, LIU Y H, et al. Ketone body β-hydroxybutyrate prevents myocardial oxidative stress in septic cardiomyopathy[J]. Oxid Med Cell Longev, 2022, 2022: 2513837.

    [17]

    ZHU H Y, BI D X, ZHANG Y H, et al. Ketogenic diet for human diseases: the underlying mechanisms and potential for clinical implementations[J]. Signal Transduct Target Ther, 2022, 7(1): 11. doi: 10.1038/s41392-021-00831-w

    [18]

    BINOBEAD M A, ALDAKHILALLAH A H, ALSEDAIRY S A, et al. Effect of low-carbohydrate diet on beta-hydroxybutyrate ketogenesis metabolic stimulation and regulation of NLRP3 ubiquitination in obese Saudi women[J]. Nutrients, 2023, 15(4): 820. doi: 10.3390/nu15040820

    [19]

    IVAN C R, MESSINA A, CIBELLI G, et al. Italian ketogenic Mediterranean diet in overweight and obese patients with prediabetes or type 2 diabetes[J]. Nutrients, 2022, 14(20): 4361. doi: 10.3390/nu14204361

    [20]

    ZHOU C, WANG M, LIANG J L, et al. Ketogenic diet benefits to weight loss, glycemic control, and lipid profiles in overweight patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trails[J]. Int J Environ Res Public Health, 2022, 19(16): 10429. doi: 10.3390/ijerph191610429

    [21]

    FALKENHAIN K, ROACH L A, MCCREARY S, et al. Effect of carbohydrate-restricted dietary interventions on LDL particle size and number in adults in the context of weight loss or weight maintenance: a systematic review and meta-analysis[J]. Am J Clin Nutr, 2021, 114(4): 1455-1466. doi: 10.1093/ajcn/nqab212

    [22]

    SCHAEFER E J, IKEZAKI H, DIFFENDERFER M R, et al. Atherosclerotic cardiovascular disease risk and small dense low-density lipoprotein cholesterol in men, women, African Americans and non-African Americans: The pooling project[J]. Atherosclerosis, 2023, 367: 15-23. doi: 10.1016/j.atherosclerosis.2023.01.015

    [23]

    LIOU L, KAPTOGE S. Association of small, dense LDL-cholesterol concentration and lipoprotein particle characteristics with coronary heart disease: a systematic review and meta-analysis[J]. PLoS One, 2020, 15(11): e0241993. doi: 10.1371/journal.pone.0241993

    [24]

    DURAN E K, ADAY A W, COOK N R, et al. Triglyceride-rich lipoprotein cholesterol, small dense LDL cholesterol, and incident cardiovascular disease[J]. J Am Coll Cardiol, 2020, 75(17): 2122-2135. doi: 10.1016/j.jacc.2020.02.059

    [25]

    QI Y, LIU J, WANG W, et al. High sdLDL cholesterol can be used to reclassify individuals with low cardiovascular risk for early intervention: findings from the Chinese multi-provincial cohort study[J]. J Atheroscler Thromb, 2020, 27(7): 695-710. doi: 10.5551/jat.49841

    [26]

    ATHINARAYANAN S J, HALLBERG S J, MCKENZIE A L, et al. Impact of a 2-year trial of nutritional ketosis on indices of cardiovascular disease risk in patients with type 2 diabetes[J]. Cardiovasc Diabetol, 2020, 19(1): 208. doi: 10.1186/s12933-020-01178-2

    [27]

    KEMPER M F, SRIVASTAVA S, TODD KING M, et al. An ester of β-hydroxybutyrate regulates cholesterol biosynthesis in rats and a cholesterol biomarker in humans[J]. Lipids, 2015, 50(12): 1185-1193. doi: 10.1007/s11745-015-4085-x

    [28]

    MICHALCZYK M M, KLONEK G, MASZCZYK A, et al. The effects of a low calorie ketogenic diet on glycaemic control variables in hyperinsulinemic overweight/obese females[J]. Nutrients, 2020, 12(6): 1854. doi: 10.3390/nu12061854

    [29]

    LIM E L, HOLLINGSWORTH K G, ARIBISALA B S, et al. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol[J]. Diabetologia, 2011, 54(10): 2506-2514. doi: 10.1007/s00125-011-2204-7

    [30] 郭琴. 生酮饮食对超重/肥胖症患者影响效果的meta分析[D]. 太原: 山西医科大学, 2021.
    [31]

    GE L, SADEGHIRAD B, BALL G D C, et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: systematic review and network meta-analysis of randomised trials[J]. BMJ, 2020, 369: m696.

    [32] 张耀元, AYAZ ALI SAMO, 桂庆军, 等. 生酮饮食改善糖尿病心肌病的机制研究进展[J]. 江苏大学学报: 医学版, 2021, 31(3): 196-199. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYZ202103003.htm
    [33]

    OKA S I, TANG F, CHIN A, et al. β-hydroxybutyrate, a ketone body, potentiates the antioxidant defense via thioredoxin 1 upregulation in cardiomyocytes[J]. Antioxidants, 2021, 10(7): 1153. doi: 10.3390/antiox10071153

    [34]

    NIELSEN R, MØLLER N, GORMSEN L C, et al. Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients[J]. Circulation, 2019, 139(18): 2129-2141. doi: 10.1161/CIRCULATIONAHA.118.036459

    [35]

    BYRNE N J, SONI S, TAKAHARA S, et al. Chronically elevating circulating ketones can reduce cardiac inflammation and blunt the development of heart failure[J]. Circ Heart Fail, 2020, 13(6): e006573. doi: 10.1161/CIRCHEARTFAILURE.119.006573

    [36]

    WEIS E M, PUCHALSKA P, NELSON A B, et al. Ketone body oxidation increases cardiac endothelial cell proliferation[J]. EMBO Mol Med, 2022, 14(4): e14753. doi: 10.15252/emmm.202114753

    [37]

    MARUSIC T, TANSEK M Z, CAMPA A S, et al. Data highlighting effects of Ketogenic diet on cardiomyopathy and hepatopathy in Glycogen storage disease Type ⅢA[J]. Data Brief, 2020, 32: 106205. doi: 10.1016/j.dib.2020.106205

    [38]

    FRANCINI-PESENTI F, TRESSO S, VITTURI N. Modified Atkins ketogenic diet improves heart and skeletal muscle function in glycogen storage disease type Ⅲ[J]. Acta Myol, 2019, 38(1): 17-20.

    [39]

    DEBERLES E, MARAGNES P, PENNIELLO-VALETTE M J, et al. Reversal of cardiac hypertrophy with a ketogenic diet in a child with mitochondrial disease and hypertrophic cardiomyopathy[J]. Can J Cardiol, 2020, 36(10): 1690. e1-1690. e3.

    [40]

    NUWAYLATI D, ELDAKHAKHNY B, BIMA A, et al. Low-carbohydrate high-fat diet: a SWOC analysis[J]. Metabolites, 2022, 12(11): 1126.

    [41]

    RAIMONDO D D, BUSCEMI S, MUSIARI G, et al. Ketogenic diet, physical activity, and hypertension-a narrative review[J]. Nutrients, 2021, 13(8): 2567.

    [42]

    OH S W, WOOD A C, HWANG S S, et al. Racial and ethnic differences in the association of low-carbohydrate diet with mortality in the multi-ethnic study of atherosclerosis[J]. JAMA Netw Open, 2022, 5(10): e2237552.

    [43] 薛长勇, 刘英华, 王觐, 等. 中长链脂肪酸食用油对高甘油三酯血症患者脂代谢的影响[J]. 营养学报, 2008, 30(4): 363-368. https://www.cnki.com.cn/Article/CJFDTOTAL-YYXX200804014.htm
    [44]

    KALAFUT K C, MITCHELL S J, MACARTHUR M R, et al. Short-term ketogenic diet induces a molecular response that is distinct from dietary protein restriction[J]. Front Nutr, 2022, 9: 839341.

    [45]

    ZHANG Y F, XU J W, ZHANG K, et al. The anticonvulsant effects of ketogenic diet on epileptic seizures and potential mechanisms[J]. Curr Neuropharmacol, 2018, 16(1): 66-70.

    [46] 岳月仪, 韩晓菁, 鲁燕. 生酮饮食的利与弊[J]. 实用临床医药杂志, 2023, 27(4): 123-126, 132. doi: 10.7619/jcmp.20222300
    [47]

    TAN Y Z, LI M, WU G L, et al. Short-term but not long-term high fat diet feeding protects against pressure overload-induced heart failure through activation of mitophagy[J]. Life Sci, 2021, 272: 119242.

    [48]

    HOLLOWAY C J, COCHLIN L E, EMMANUEL Y, et al. A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects[J]. Am J Clin Nutr, 2011, 93(4): 748-755.

    [49]

    TAO J, CHEN H, WANG Y J, et al. Ketogenic diet suppressed T-regulatory cells and promoted cardiac fibrosis via reducing mitochondria-associated membranes and inhibiting mitochondrial function[J]. Oxid Med Cell Longev, 2021, 2021: 5512322.

    [50]

    XU S, TAO H, CAO W, et al. Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis[J]. Signal Transduct Target Ther, 2021, 6(1): 54.

    [51] 江波. 生酮减脂法[J]. 肿瘤代谢与营养电子杂志, 2017, 4(3): 263-266. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLDX201703004.htm
    [52] 裴陈琳, 鲁丁强, 庞广昌. 生酮饮食(KD)在临床营养辅助治疗中的研究进展[J]. 食品工业科技, 2022, 8(16): 467-475. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ202216056.htm
  • 期刊类型引用(3)

    1. 赵茜. 老年呼吸衰竭患者机械通气期间发生呼吸机相关性肺炎的影响因素. 中国民康医学. 2025(04): 12-15+19 . 百度学术
    2. 龙茵,朱水泉,伍桂雄,梁紫沙. 平喘调中针刺法联合无创通气治疗慢性阻塞性肺疾病急性加重期合并Ⅱ型呼吸衰竭患者的效果及对肺功能的改善作用. 现代医学与健康研究电子杂志. 2024(12): 82-84 . 百度学术
    3. 温文乐,齐亚伟,杨敬雅,毋娜,何博,金文霞. 尼可刹米注射液联合无创正压通气辅助治疗AECOPD并呼吸衰竭的临床观察. 实用中西医结合临床. 2024(13): 46-49 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  163
  • HTML全文浏览量:  47
  • PDF下载量:  30
  • 被引次数: 5
出版历程
  • 收稿日期:  2023-12-19
  • 修回日期:  2024-02-14
  • 网络出版日期:  2024-05-14
  • 刊出日期:  2024-05-14

目录

/

返回文章
返回
x 关闭 永久关闭