Research progress on early biomarkers of cardiac surgery-associated acute kidney injury
-
摘要:
心脏手术相关急性肾损伤(CSA-AKI)是心脏外科手术后常见且严重的并发症。传统依赖于血清肌酐及尿量变化的诊断存在滞后性, 因此迫切需要灵敏度高、特异度强的生物标志物来早期发现并识别CSA-AKI的高危患者,从而能够进行早期干预,获得更好的临床结局。本文就CSA-AKI的相关生物标志物进行综述,以期能为后续CSA-AKI的相关研究提供有价值的信息。
Abstract:Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common and serious complication following cardiac surgical procedures. The conventional diagnostic methods relying on serum creatinine and urine output changes often exhibit delayed responsiveness. Therefore, there is an urgent need for highly sensitive and specific biomarkers to detect and identify high-risk patients with CSA-AKI at an early stage, allowing for timely intervention and improved clinical outcomes. In this paper, the relevant biomarkers of CSA-AKI were reviewed in order to provide valuable information for the subsequent research on CSA-AKI.
-
Keywords:
- acute kidney injury /
- cardiac surgery /
- biomarkers /
- cardiopulmonary bypass /
- diagnosis /
- prevention
-
青春发育是指人类的性器官由未成熟发育为具备生殖能力的状态,进而踏入成年期前的一个阶段。在发育期,下丘脑-垂体-性腺轴(HPGA)逐步发育成熟,引发身高增长加速、生殖器官开始成熟,并出现第二性征[1]。下丘脑促性腺激素释放激素(GnRH)的脉冲增加使垂体产生促性腺激素,进而引起性腺成熟和性腺类固醇激素的产生[2]。性腺类固醇激素的增高引起第二性征的成熟。GnRH激发试验主要用于儿童青春期疾病的诊断检查,以评估HPGA的活动[1, 3]。然而, GnRH激发试验仍有一些不便之处,如血清促性腺激素呈脉冲式分泌,但单次基础血清促性腺激素(Gn)水平测定很难反映其分泌情况[4]; GnRH激发试验很耗时,需要重复采样,属于一种有创检查。作为评估HPGA功能的另一种非侵入性方法,尿促性腺激素(UGn)测量值得推荐[5-6]。现将UGn在评估儿童性发育中的研究进展综述如下。
1. 促黄体生成素(LH)和卵泡刺激素(FSH) 检测技术
1943年, CATCHPOLE H采用生物效价法每日对12名女童(4~14岁)的UGn进行测定,但因其操作复杂、费时费力,故未能得到有效推广。随着促性腺激素检测技术的发展, 1959年放射免疫分析法(RIA)问世,但其存在放射性污染的缺点,且这类免疫测定方法通常灵敏度不高,难以准确测定未浓缩尿中的低浓度LH、FSH的含量[7]。1988年,以单克隆抗体为基础的非竞争性生物素——亲和素免疫测定方法(NABA)出现,并用于检测晨尿LH含量。采用放射性同位素、荧光物质和化学发光物代替酶,即可建立各种不同的NABA法,如免疫放射测定法(IRMA)、免疫荧光测定法(IFMA)和免疫化学发光法(ICMA)等[7]。其中,IFMA或ICMA等可直接检测UGn,无需萃取,检测的可重复性较好[8]。目前, ICMA已被普遍应用于临床血清Gn检测。
2. 关于尿液标本的留取时间与肌酐(Cr) 校正
血清Gn浓度在青春前期和整个青春期在夜间以脉冲方式分泌增加,而晨尿有望反映这种夜间分泌的升高[6, 9]。目前临床多采用任意定时尿或晨尿Gn作为24 h血清Gn分泌情况的估测。目前国外文献报道多以晨尿研究为主。在国内关于UGn与儿童性发育的相关研究中,不乏有关定时尿Gn的文献报道。谢书艳等[10]收集40例因发育异常入院行促性腺激素释放激素类似物(GnRHa)激发试验的患儿昼夜12 h尿,结果发现昼夜12 h尿Gn有助于儿童HPGA的启动诊断,且其联合检测可能优于单独日间或夜间检测。
目前,有关儿童行GnRH或GnRHa激发试验时UGn动态变化的研究甚少,在临床研究中难以选择最佳留尿时间。国内研究[11]对23例入院行GnRHa激发试验的患儿进行研究,注射曲谱瑞林后,连续收集9个分段(首段1.5 h, 其余各段为1 h)尿,发现GnRHa激发试验中连续分段UGn可反映儿童血Gn动态变化。无创便捷的GnRHa激发试验(ICMA) 尿检测法临床相关研究的适宜时间段为激发试验的48 h内,最佳时间窗可能为激发试验的24 h内[12]。其中,在GnRHa激发试验中连续分段收集4.5 h尿液检测UGn, 其评估儿童HPGA启动的价值优于血自发性Gn和自发性夜间12 h UGn[13]。以上研究提示, GnRHa激发试验中连续分段UGn可反映儿童血Gn动态变化,为选取最佳留尿时间提供了线索。基于此,研究发现,激发后4 h总尿黄体生成素(ULH)及ULH/UFSH比值对鉴别乳房早发育(PT)和中枢性性早熟(CPP)均有一定意义[14], 但这均是基于曲谱瑞林激发试验展开的研究,而曲谱瑞林的激发作用比天然GnRH作用强数十倍,因此可能存在假阳性结果,目前一般不推荐常规诊断使用,且上述研究病例数量有限,尚缺乏这方面研究的有力论证。
此外,尿液样本的稀释度不同会引起相应的尿液溶质浓度改变,因此可能需要调整尿液浓度以避免因水合作用引起的误差[15]。渗透压、尿比重和Cr可用于调节水合作用[16]。研究[17]表明,与Cr相比,尿比重表现出更高的时间一致性,更适合校正儿童尿量的变异性,尽管肌酐校正在超重和肥胖儿童中也有很好的效果。
目前,国内外关于UGn与其相应血清促性腺激素的相关性研究多数采用Cr校正。然而也研究认为, Cr会导致过度校正,反而使UGn与血清Gn的相关性减弱,如SINGH G K S等[18]研究发现,与经Cr校正后的晨UGn相比,未经Cr校正的晨UGn与相应血清Gn的相关性更高,因此提出青少年晨尿中的性腺类固醇激素和LH浓度不受水合状态的显著影响,可能不需要校正Cr, 但这可能不适合用于随机尿样,因为水合状态可能会有更大的变化。关于尿液样本中Gn是否需要经Cr校正,目前尚无定论,需要更多研究来证明。
3. UGn水平与儿童HPGA功能评估
青春期的开始是由GnRH的脉冲式释放启动的[2]。在HPGA激活后,血清Gn的水平在向青春期过渡时增高,进而刺激性腺成熟和性腺类固醇的产生[1, 3]。迄今为止,临床仍采用传统的GnRH激发试验作为评估HPGA功能的经典方法。随着灵敏的新型检测方法不断出现, UGn与血清Gn水平存在相关性被发现。
3.1 UGn可反映血清促性腺激素水平
0~6岁儿童经Cr校正的UGn水平随年龄增大呈下降趋势[19]。青春期男性ULH水平增加了约50倍,尿卵泡刺激素(UFSH)水平约增加了5倍,而女性在青春期ULH水平增加了约90倍,女性UFSH水平与男性基本相同[20]。UGn与Tanner分期也有良好的相关性,Tanner Ⅰ期到Ⅱ期的过渡期间,女性和男性ULH浓度都有所增加[21-22]。LUCACCIONI L等[23]通过免疫法测定非定时尿液样本中UGn并校正Cr,发现血LH和ULH/UCr、血FSH和UFSH/UCr之间存在明显相关性,证实UGn能可靠反映血清促性腺激素水平,这表明通过现代敏感测定法测定的UFSH和ULH水平可用于评估儿童时期促性腺激素的分泌[20]。因此, UGn浓度的检测可能有助于评估整个青春期的发育,也有助于检测青春期前到青春期的转变[21]。
一项单中心研究中, DEMIR A等[5]采用时间分辨夹心荧光免疫分析法比较了274例就诊儿童的晨尿促性腺激素、基础和GnRH激发试验后的血清促性腺激素水平,发现ULH、UFSH、ULH/UFSH与基础、GnRH激发试验的相应血清参数具有良好的相关性,且ULH和ULH/UFSH在预测青春期GnRH激发试验结果时的表现与基础血清LH相当。在HPGA启动的女性中, ULH/Cr、UFSH/Cr在24 h内升高, 48 h后逐渐降至基线。在HPGA未启动的女性中,虽然有相同的动态趋势,但是ULH/Cr或UFSH/Cr的振幅较低, 24 h后降至基线[24]。
3.2 ULH在评估青春期启动方面优于UFSH
青春期的开始预示着夜间促性腺激素分泌的增加,其特征是LH的脉冲式分泌比FSH更强。基础血清LH水平比血清FSH水平更能反映青春期发育过程,因为在青春期前和成年期之间血清LH增加了50~100倍,而血清FSH相应增加了大约10倍[25-26]。青春发育期间,血浆中LH的生物活性可增强5倍[27]。随着年龄和青春期的进展, UGn也随之增长,并且可以在晨尿中检测到[28]。ULH在12岁以前缓慢升高,此后在正常男童和女童中迅速升高,而UFSH在8岁时略有增加,此后男女童均无变化[29-30]。青春期UGn中主要升高的是ULH,但是UFSH升高早于ULH。
3.3 ULH在评估HPGA启动中的优势
青春期内分泌启动的标志是夜间继下丘脑GnRH脉冲式分泌增加后垂体LH脉冲分泌幅度增加,首次GnRH脉冲释放增加发生在临床青春期开始的前几年,仅在部分夜晚或伴随着深度睡眠的开始释放,因此这短暂的夜间活动不能被清晨血清LH检测到,但是可以通过检测ULH被发现[6]。KOLBY N等[28]研究发现,UGn水平在青春期开始之前便增加,其中晨尿ULH有一个关键性的增加,与性别无关[6]。这早于青春期临床表现,且比血清LH浓度增加早1~2年。因此,通过ULH检测评估青春期前期进展是有可能的[6]。
4. UGn应用于临床实践的可能性
UGn升高和(或)降低与青春期异常提前或延迟的正确诊断有关,测定UFSH和ULH可提供一种简便、灵敏、准确的儿童促性腺激素功能检测方法。
4.1 UGn可作为临床实践中对CPP女性的一种有效初筛方法
随机血清Gn在临床中可用于CPP的初筛,已有多种研究[31]证明UGn与血清Gn之间存在相关性,推测UGn也可作为CPP筛查的理想样本。SHIM Y S等[4]发现,晨尿和随机尿LH水平、晨尿和随机尿ULH/FSH均具有良好的诊断性能,随机尿Gn的诊断性能不低于晨尿Gn。因此,单次随机测定UGn浓度对女性CPP的初步筛查可能是有效的。ULH与血清LH呈正相关, ULH浓度为0.725 IU/L是反映GnRH激发试验阳性的临界值[32]。但这项研究的受试者数量很少,对数据统计学意义存疑,因此需要进一步的大规模前瞻性研究来证实随机尿促性腺激素的有效性。
晨尿Gn对早期预测PT转化为CPP具有一定的临床意义[33]。CPP患者中,ULH浓度>2 SD能够预测75%的患者呈阳性[28]。ZHAN S M等[34]对355名CPP女性进行了横断面研究,发现晨尿ULH和ULH/UFSH随着Tanner分期的进展显著增高,其中当ULH取1.74 IU/L时,其预测GnRH激发试验阳性的敏感性为69.4%, 特异性为75.3%, 另外当联合阈值ULH ≥ 1.74 IU/L+ ULH与UFSH比值>0.4, 其特异性达到86.6%。因此, ULH可作为CPP诊断和筛查的可靠指标。国内关于定时尿的相关研究[8]发现,夜间12 h尿ULH、UFSH、ULH/UFSH判断HPGA轴启动的灵敏性和特异性分别为90%、88%以上。夜间12 h ULH≥0.113 IU/L对女性CPP也具有筛查价值[35]。近5年国外相关研究得出的ULH截值点的总结见表 1。
表 1 ULH作为评估HPGA启动的指标ULH 敏感性/% 特异性/% 例数 时间 检测方法 参考文献 晨尿ULH > 1.75 IU/L 91.5 82.7 138(男) 2016 IFMA DEMIR A等[5] 晨尿ULH > 1.2 IU/L 80.0 74.0 52(女) 非定时ULH/Cr > 0.05 IU/mmol 86.0 71.0 41(男) 2016 CMIA LUCACCIONI L等[23] 晨尿ULH > 0.58 IU/L 91.9 63.2 100(女) 2019 DELFIA SHIM Y S等[4] 随机ULH > 0.2I U/L 77.4 73.7 晨尿ULH > 1.01 mIU/mL 92.3 100.0 68(女) 2020 ECLIA YVCE Ö等[36] 晨尿ULH > 1.74 IU/L 69.4 75.3 355(女) 2021 ICMA ZHAN S M等[34] 晨尿ULH > 1.74 IU/L, ULH/UFSH > 0.4 65.5 86.6 IFMA: 免疫荧光测定法; ICMA: 免疫化学发光法; CMIA: 化学发光微粒免疫测定;
DELFIA: 解离增强镧系元素荧光免疫检测; ECLIA: 电化学发光法。4.2 ULH可帮助区分快进展性早熟和慢进展性早熟
CPP是由于HPGA功能提前启动而导致女童8岁前、男童9岁前出现内外生殖器快速发育及第二性征出现的一种常见儿科内分泌疾病[37]。CPP可分为快速进展型、缓慢进展型、生长迟缓型。许多性早熟女童病情发展迅速,会出现初潮和骨骺生长板融合,如果不及时治疗,最终导致终身高降低,但目前尚无明确的界定标准。晨尿ULH在区分快进展性早熟和慢进展性早熟中起到了一定作用。ZUNG A等[38]对47例性早熟女孩随访6个月后,评估发育程度、生长速度和骨龄成熟程度,并将其分为慢进展组和快进展组。结果显示, ULH可以区分快进展组与慢进展组,而血清Gn无法区分。当ULH临界值取1.16 IU/L时,敏感性和特异性较高。因此,晨尿ULH是可靠的测定法,可能有助于区分慢进展组和快进展组。国内也有研究[39]表明,快进展青春期女童晨尿ULH较缓慢进展青春期女童升高,且晨尿ULH与基础血清LH、GnRH激发LH峰值有显著相关性,提示UGn测定无创、简便,对快进展青春期有一定诊断意义。
4.3 ULH可作为监测GnRHa治疗CPP女孩的一种方法
CPP患者通常在开始治疗90 d后通过重复行GnRH激发试验来检测GnRHa治疗的有效性。晨尿ULH水平与激发后血峰值LH水平呈高度正相关,与基础LH水平呈显著正相关,经GnRHa治疗后,尿LH和FSH浓度明显下降[32], 与KOLBY N、ZHAN S M等[28, 34]发现的情况一致,提示晨尿ULH水平可作为监测GnRHa治疗的可靠、灵敏的检测方法[36]。研究[40]发现, ULH测定或许可以用于监测HPGA抑制的某些逃逸,这是GnRH激发试验无法识别的现象。但是,也有研究[41]发现,单次定时尿液采集缺乏评估HPGA抑制的敏感性和特异性,不过这些研究是在一小群CPP患者中进行的,并且未被抑制的患者数量不足以确定ULH是否可用于预测治疗反应[36], 因此不能对ULH的可靠性进行任何预测。
4.4 尿促性腺激素在Turner综合征高促性腺激素状态中的临床应用
Turner综合征是由全部或部分体细胞中一条X染色体完全或部分缺失所致,这类患者发生原发性卵巢功能不全的风险增大。BONCOMPAGNI A等[42]通过对37名Turner综合征未成年女性患者进行回顾性队列研究,留取非定时尿液样本,发现在高促性腺激素状态下, ULH与血清LH呈正相关, UFSH是抗缪勒管激素(AMH) < 4 pmol/L的合理标志物。因此, ULH和UFSH也可作为高促性腺激素状态下评估卵巢功能的非侵入性、有用和可靠的标志物。此外, UGn联合尿性激素对明确小青春期的结束时间及年龄界定也存在一定意义[43]。
综上所述, UGn是一种无创、能反映血清Gn水平的参考指标,可作为CPP女性的一种有效初筛方法,有助于区分快进展性早熟和慢进展性早熟,对监测采用GnRHa治疗的CPP女性的疗效也具有一定作用。此外,在Turner综合征中, ULH可以作为评估卵巢功能的标志物,但需更多的研究证明其有效性。因此, UGn在评估性发育中可能具有较高的诊断价值。但是目前研究对于尿液标本的留取时间以及是否需要Cr校正尚存在争议,需更多的实验进行验证。另外,目前实验室检测方法的初始开发和研究的主要对象为人血清,且尿液样本的检测结果往往存在滞后性[8], 寻找高灵敏度的检测方法以及建立完善的实验室方法十分必要。最后,上述所有检测都需要在广泛人群中开展相关研究及全面分析,才能尽量避免实验的局限性。
-
表 1-1 CSA-AKI生物标志物的特征比较
标志物 结构 研究者 标本类型及采集时间 Cut-off 曲线下面积 灵敏度 特异度 较肌酐预测AKI提前时间 独特性质 局限性 NGAL 一种25 kDa的小蛋白,含有178个氨基酸,由中性粒细胞产生,通过肾小球自由过滤,然后被近端小管完全重吸收[20-21] MISHRA J等[22] 术后2 h尿液 50 μg/L 0.99 1.00 0.98 1~3 d CSA-AKI早期生物标志物[22]; 对基线水平不高的患者更具诊断价值[23] 容易受到年龄、炎症、性别等影响[24]; Cut-off值存在争议 MORIYAMA T等[25] CPB始末、术后0、3 h尿液 110 ng/mL 0.87 0.79 0.83 10 h SLAGLE C L等[26] 术后12、24、26、48、72、96 h尿液 144 ng/mL 0.79 0.81 0.74 12~24 h [TIMP-2]×[IGFBP-7] TIMP-2是一种具有抗凋亡和增殖特性的21 KDa蛋白, IGFBP-7是一种29 KDa蛋白,通过抑制激酶信号通路抑制并调节细胞衰老。TIMP-2和IGFBP-7均是G1期细胞周期阻滞的诱导剂[27] MEERSCH M等[27] 术后4、12、24 h尿液 0.5(ng/mL)2/1 000 0.84 0.92 0.81 12~24 h 单独使用时准确度优于其他所有标志物[28] 患者存在蛋白尿,尿白蛋白>125 mg/dL将干扰检测结果, >3 000 mg/dL将使检测结果无效,尿胆红素浓度>7.2 g/dL[29] CUMMINGS J J等[30] 术后0 h、入ICU后6 h和1、2、3 d尿液 0.3(ng/mL)2/1 000 0.82 1.00 1.00 12~18 h且能预测术后48 h内2~3期AKI GRIESHABER P等[28] 术后4 h 0.3 (ng/mL)2/1 000 0.63 0.38 0.81 12~24 h且能预测术后24 h内全期AKI L-FABP 一种14 kDa的脂肪酸结合蛋白[31-32] KHAN M B等[33] 术后4 h尿液 269 ng/L 0.84 0.83 0.83 12~24 h 与肌酐联用时可显著改善心脏重症监护病房(CICU)患者的远期临床结局; 基线尿L-FABP水平能预测急性失代偿性心力衰竭患者的AKI[33] 当患者合并肝脏疾病时,尿液中的L-FABP对早期预测CSA-AKI的特异度可能会降低,甚至失去诊断价值[34] HISHIKARI K等[34] 入院0.5、24、48 h和7 d尿液 12.5 μg/g Cr 0.93 0.94 0.87 12~24 h KIM-1 一种1型跨膜糖蛋白,缺血和肾毒性条件下在近端小管细胞中表达[45] HAN W K等[35] 术后12 h尿液 2.0 ng/mg Cr 0.83 0.65 0.42 1~3 d 能预测ATI患者的不良肾脏结局[29] 受到糖尿病、高血压、动脉粥样硬化性脑缺血和炎症性疾病影响; 缺乏公认的阈值[29] 表 1-2 CSA-AKI生物标志物的特征比较
标志物 结构 研究者 标本类型及采集时间 Cut-off 曲线下面积 灵敏度 特异度 较肌酐预测AKI提前时间 独特性质 局限性 术后24 h尿液 2.0 ng/mg Cr 0.78 0.74 0.90 术后36 h尿液 2.0 ng/mg Cr 0.84 0.65 0.80 GENG J W等[36] — — 0.62 0.74 0.84 12~36 h DKK3 一种小管间质纤维化的调节因子,被认为是肾小管应激的标志[45] SCHUNK S J等[37] 术前尿液 471 pg/mg Cr 0.78 0.76 0.79 12~18 h 高水平DKK3提示了AKI向慢性肾脏病的转变[37]; 可用于CSA-AKI高危患者的术前筛查[37] 诊断能力有限,推荐用于高危患者的术前筛查[37] Penkid 一种5 kDa的肽,在许多组织中表达,但在肾组织中尤其密集,体内半衰期长,采集后稳定,不是血浆结合蛋白,仅在肾小球中被过滤[38-40] HOLLINGER A等 入院0、1、2 d血液 84 pmol/L 0.65 0.77 0.59 24~48 h 能够提示肾小球滤过损伤[41] 目前有关PenKid与其他生物标志物的比较的研究较少,但与其他标志物的联合使用是否能进一步改善CSA-AKI的定义及其与预后的相关性仍有待探讨 DÉPRET F等[41] 入院24 h血液 80 pmol/L 0.61 — — 24~48 h miRNA 一种由21~23个核苷酸组成的内源性非蛋白质编码RNA序列,生理状态下以游离状态稳定地存在于血液和尿液中[42-43] GAEDE L等[44] 术前4 h、术后4 h血液 0.31 0.70 — — 12~24 h 联合乳酸水平提供了良好的预测AKI的能力[45] 大多是从动物模型推断的,临床证据不足[43]; 信号通路复杂,可能还与其他疾病相关,变化不够特异度[42] MILLER D等[45] 术前尿液及血液、术后6、12、24、48、72、96 h血液、术后24 h尿液 — 0.82 — — 12~24 h NGAL: 中性粒细胞明胶酶相关脂质运载蛋白; TIMP-2: 尿基质金属蛋白酶组织抑制剂-2; IGFBP-7: 尿胰岛素样生长因子结合蛋白-7; L-FABP: 肝型脂肪酸结合蛋白;
KIM-1: 肾损伤分子-1; DKK3: Dickkopf相关蛋白3; Penkid: 脑啡肽原a 119-159; miRNA: 微小RNA。 -
[1] OLOWU W A, NIANG A, OSAFO C, et al. Outcomes of acute kidney injury in children and adults in sub-Saharan Africa: a systematic review[J]. Lancet Glob Health, 2016, 4(4): e242-e250. doi: 10.1016/S2214-109X(15)00322-8
[2] 吴彬彬. 术前纤维蛋白原对心脏瓣膜置换术后急性肾损伤的影响[D]. 杭州: 浙江大学, 2020. [3] SRIVASTAVA V, D'SILVA C, TANG A, et al. The impact of major perioperative renal insult on long-term renal function and survival after cardiac surgery[J]. Interact Cardiovasc Thorac Surg, 2012, 15(1): 14-17. doi: 10.1093/icvts/ivs106
[4] SCHURLE A, KOYNER J L. CSA-AKI: incidence, epidemiology, clinical outcomes, and economic impact[J]. J Clin Med, 2021, 10(24): 5746. doi: 10.3390/jcm10245746
[5] KELLUM J A, PROWLE J R. Paradigms of acute kidney injury in the intensive care setting[J]. Nat Rev Nephrol, 2018, 14(4): 217-230. doi: 10.1038/nrneph.2017.184
[6] 喻卓. 体外循环术后急性肾损伤进展至慢性肾脏病的风险因素分析[D]. 广州: 南方医科大学, 2022. [7] FUHRMAN D Y, KELLUM J A. Epidemiology and pathophysiology of cardiac surgery-associated acute kidney injury[J]. Curr Opin Anaesthesiol, 2017, 30(1): 60-65. doi: 10.1097/ACO.0000000000000412
[8] YANG Y L, MA J, ZHAO L Y. High central venous pressure is associated with acute kidney injury and mortality in patients underwent cardiopulmonary bypass surgery[J]. J Crit Care, 2018, 48: 211-215. doi: 10.1016/j.jcrc.2018.08.034
[9] BAINES C P. The mitochondrial permeability transition pore and ischemia-reperfusion injury[J]. Basic Res Cardiol, 2009, 104(2): 181-188. doi: 10.1007/s00395-009-0004-8
[10] SU L J, ZHANG J H, GOMEZ H, et al. Mitochondria ROS and mitophagy in acute kidney injury[J]. Autophagy, 2023, 19(2): 401-414. doi: 10.1080/15548627.2022.2084862
[11] KIRKLIN J K, WESTABY S, BLACKSTONE E H, et al. Complement and the damaging effects of cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg, 1983, 86(6): 845-857. doi: 10.1016/S0022-5223(19)39061-0
[12] ASIMAKOPOULOS G, TAYLOR K M. Effects of cardiopulmonary bypass on leukocyte and endothelial adhesion molecules[J]. Ann Thorac Surg, 1998, 66(6): 2135-2144. doi: 10.1016/S0003-4975(98)00727-9
[13] BONVENTRE J V, YANG L. Cellular pathophysiology of ischemic acute kidney injury[J]. J Clin Invest, 2011, 121(11): 4210-4221. doi: 10.1172/JCI45161
[14] HAN S J, LEE H T. Mechanisms and therapeutic targets of ischemic acute kidney injury[J]. Kidney Res Clin Pract, 2019, 38(4): 427-440. doi: 10.23876/j.krcp.19.062
[15] LE DORZE M, LEGRAND M, PAYEN D, et al. The role of the microcirculation in acute kidney injury[J]. Curr Opin Crit Care, 2009, 15(6): 503-508. doi: 10.1097/MCC.0b013e328332f6cf
[16] ALI F, SULTANA S. Repeated short-term stress synergizes the ROS signalling through up regulation of NFkB and iNOS expression induced due to combined exposure of trichloroethylene and UVB rays[J]. Mol Cell Biochem, 2012, 360(1/2): 133-145.
[17] MOAT N E, EVANS T E, QUINLAN G J, et al. Chelatable iron and copper can be released from extracorporeally circulated blood during cardiopulmonary bypass[J]. FEBS Lett, 1993, 328(1/2): 103-106.
[18] HAASE M, BELLOMO R, HAASE-FIELITZ A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury[J]. J Am Coll Cardiol, 2010, 55(19): 2024-2033. doi: 10.1016/j.jacc.2009.12.046
[19] KHWAJA A. KDIGO clinical practice guidelines for acute kidney injury[J]. Nephron Clin Pract, 2012, 120(4): c179-c184. doi: 10.1159/000339789
[20] SHANG W J, WANG Z G. The update of NGAL in acute kidney injury[J]. Curr Protein Pept Sci, 2017, 18(12): 1211-1217.
[21] CHEW S T H, HWANG N C. Acute kidney injury after cardiac surgery: a narrative review of the literature[J]. J Cardiothorac Vasc Anesth, 2019, 33(4): 1122-1138. doi: 10.1053/j.jvca.2018.08.003
[22] MISHRA J, DENT C, TARABISHI R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery[J]. Lancet, 2005, 365(9466): 1231-1238. doi: 10.1016/S0140-6736(05)74811-X
[23] MOSTAFA E A, SHAHIN K M, EL MIDANY A A H, et al. Validation of cardiac surgery-associated neutrophil gelatinase-associated lipocalin score for prediction of cardiac surgery-associated acute kidney injury[J]. Heart Lung Circ, 2022, 31(2): 272-277. doi: 10.1016/j.hlc.2021.05.084
[24] SKRYPNYK N I, GIST K M, OKAMURA K, et al. IL-6-mediated hepatocyte production is the primary source of plasma and urine neutrophil gelatinase-associated lipocalin during acute kidney injury[J]. Kidney Int, 2020, 97(5): 966-979. doi: 10.1016/j.kint.2019.11.013
[25] MORIYAMA T, HAGIHARA S, SHIRAMOMO T, et al. Comparison of three early biomarkers for acute kidney injury after cardiac surgery under cardiopulmonary bypass[J]. J Intensive Care, 2016, 4: 41. doi: 10.1186/s40560-016-0164-1
[26] SLAGLE C L, GOLDSTEIN S L, GAVIGAN H W, et al. Association between elevated urine neutrophil gelatinase-associated lipocalin and postoperative acute kidney injury in neonates[J]. J Pediatr, 2021, 238: 193-201, e2. doi: 10.1016/j.jpeds.2021.07.041
[27] MEERSCH M, SCHMIDT C, VAN AKEN H, et al. Urinary TIMP-2 and IGFBP-7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery[J]. PLoS One, 2014, 9(3): e93460. doi: 10.1371/journal.pone.0093460
[28] GRIESHABER P, MÖLLER S, ARNETH B, et al. Predicting cardiac surgery-associated acute kidney injury using a combination of clinical risk scores and urinary biomarkers[J]. Thorac Cardiovasc Surg, 2020, 68(5): 389-400. doi: 10.1055/s-0039-1678565
[29] CAI J R, JIAO X Y, LUO W L, et al. Kidney injury molecule-1 expression predicts structural damage and outcome in histological acute tubular injury[J]. Ren Fail, 2019, 41(1): 80-87. doi: 10.1080/0886022X.2019.1578234
[30] CUMMINGS J J, SHAW A D, SHI J, et al. Intraoperative prediction of cardiac surgery-associated acute kidney injury using urinary biomarkers of cell cycle arrest[J]. J Thorac Cardiovasc Surg, 2019, 157(4): 1545-1553, e5. doi: 10.1016/j.jtcvs.2018.08.090
[31] KASHANI K, CHEUNGPASITPORN W, RONCO C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption[J]. Clin Chem Lab Med, 2017, 55(8): 1074-1089. doi: 10.1515/cclm-2016-0973
[32] 吴彬彬, 杨毅. 心脏手术相关急性肾损伤早期生物学标志物研究进展[J]. 浙江大学学报: 医学版, 2019, 48(2): 224-229. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYB201902022.htm [33] KHAN M B, NASEEM T, WAZIR H D, et al. Association of liver fatty acid binding protein with acute kidney injury in paediatric patients after cardiac surgery[J]. J Ayub Med Coll Abbottabad, 2022, 34(Suppl 1)(3): S602-S607.
[34] HISHIKARI K, HIKITA H, NAKAMURA S, et al. Urinary liver-type fatty acid-binding protein level as a predictive biomarker of acute kidney injury in patients with acute decompensated heart failure[J]. Cardiorenal Med, 2017, 7(4): 267-275. doi: 10.1159/000476002
[35] HAN W K, WAIKAR S S, JOHNSON A, et al. Urinary biomarkers in the early diagnosis of acute kidney injury[J]. Kidney Int, 2008, 73(7): 863-869. doi: 10.1038/sj.ki.5002715
[36] GENG J W, QIU Y X, QIN Z, et al. The value of kidney injury molecule 1 in predicting acute kidney injury in adult patients: a systematic review and Bayesian meta-analysis[J]. J Transl Med, 2021, 19(1): 105. doi: 10.1186/s12967-021-02776-8
[37] SCHUNK S J, ZARBOCK A, MEERSCH M, et al. Association between urinary dickkopf-3, acute kidney injury, and subsequent loss of kidney function in patients undergoing cardiac surgery: an observational cohort study[J]. Lancet, 2019, 394(10197): 488-496. doi: 10.1016/S0140-6736(19)30769-X
[38] DENNING G M, ACKERMANN L W, BARNA T J, et al. Proenkephalin expression and enkephalin release are widely observed in non-neuronal tissues[J]. Peptides, 2008, 29(1): 83-92. doi: 10.1016/j.peptides.2007.11.004
[39] BEUNDERS R, VAN GROENENDAEL R, LEIJTE G P, et al. Proenkephalin compared to conventional methods to assess kidney function in critically ill sepsis patients[J]. Shock, 2020, 54(3): 308-314. doi: 10.1097/SHK.0000000000001510
[40] CASAS-APARICIO G, ALVARADO-DE LA BARRERA C, ESCAMILLA-ILLESCAS D, et al. Role of urinary kidney stress biomarkers for early recognition of subclinical acute kidney injury in critically ill COVID-19 patients[J]. Biomolecules, 2022, 12(2): 275. doi: 10.3390/biom12020275
[41] DÉPRET F, HOLLINGER A, CARIOU A, et al. Incidence and outcome of subclinical acute kidney injury using penKid in critically ill patients[J]. Am J Respir Crit Care Med, 2020, 202(6): 822-829. doi: 10.1164/rccm.201910-1950OC
[42] LI Y F, JING Y, HAO J L, et al. MicroRNA-21 in the pathogenesis of acute kidney injury[J]. Protein Cell, 2013, 4(11): 813-819. doi: 10.1007/s13238-013-3085-y
[43] ZOU Y F, ZHANG W. Role of microRNA in the detection, progression, and intervention of acute kidney injury[J]. Exp Biol Med, 2018, 243(2): 129-136. doi: 10.1177/1535370217749472
[44] GAEDE L, LIEBETRAU C, BLUMENSTEIN J, et al. Plasma microRNA-21 for the early prediction of acute kidney injury in patients undergoing major cardiac surgery[J]. Nephrol Dial Transplant, 2016, 31(5): 760-766. doi: 10.1093/ndt/gfw007
[45] MILLER D, EAGLE-HEMMING B, SHEIKH S, et al. Urinary extracellular vesicles and micro-RNA as markers of acute kidney injury after cardiac surgery[J]. Sci Rep, 2022, 12(1): 10402. doi: 10.1038/s41598-022-13849-z
[46] BOUQUEGNEAU A, KRZESINSKI J M, DELANAYE P, et al. Biomarkers and physiopathology in the cardiorenal syndrome[J]. Clin Chim Acta, 2015, 443: 100-107. doi: 10.1016/j.cca.2014.10.041
[47] MÁRTENSSON J, BELLOMO R. The rise and fall of NGAL in acute kidney injury[J]. Blood Purif, 2014, 37(4): 304-310. doi: 10.1159/000364937
[48] DE GEUS H R H, RONCO C, HAASE M, et al. The cardiac surgery-associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score: a potential tool to monitor acute tubular damage[J]. J Thorac Cardiovasc Surg, 2016, 151(6): 1476-1481. doi: 10.1016/j.jtcvs.2016.01.037
[49] XIAOLI L, YUJIE Z, ZHIJIAN W, et al. E0513 Plasma NGAL Could early predict contrast-induced acute kidney injury after percutaneous coronary interventions[J]. Heart, 2010, 96(Suppl 3): A159-A160.
[50] BOLIGNANO D, BASILE G, PARISI P, et al. Increased plasma neutrophil gelatinase-associated lipocalin levels predict mortality in elderly patients with chronic heart failure[J]. Rejuvenation Res, 2009, 12(1): 7-14. doi: 10.1089/rej.2008.0803
[51] MARAKALA V. Neutrophil gelatinase-associated lipocalin (NGAL) in kidney injury-A systematic review[J]. Clin Chim Acta, 2022, 536: 135-141. doi: 10.1016/j.cca.2022.08.029
[52] GOMES B C, SILVA JUNIOR J M, TUON F F. Evaluation of urinary NGAL as a diagnostic tool for acute kidney injury in critically ill patients with infection: an original study[J]. Can J Kidney Health Dis, 2020, 7: 2054358120934215.
[53] TAI Q, YI H M, WEI X X, et al. The accuracy of urinary TIMP-2 and IGFBP-7 for the diagnosis of cardiac surgery-associated acute kidney injury: a systematic review and meta-analysis[J]. J Intensive Care Med, 2020, 35(10): 1013-1025. doi: 10.1177/0885066618807124
[54] GÖCZE I, JAUCH D, GÖTZ M, et al. Biomarker-guided intervention to prevent acute kidney injury after major surgery: the prospective randomized BigpAK study[J]. Ann Surg, 2018, 267(6): 1013-1020. doi: 10.1097/SLA.0000000000002485
[55] MEERSCH M, SCHMIDT C, HOFFMEIER A, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial[J]. Intensive Care Med, 2017, 43(11): 1551-1561. doi: 10.1007/s00134-016-4670-3
[56] GUZZI L M, BERGLER T, BINNALL B, et al. Clinical use of[TIMP-2]·[IGFBP-7]biomarker testing to assess risk of acute kidney injury in critical care: guidance from an expert panel[J]. Crit Care, 2019, 23(1): 225. doi: 10.1186/s13054-019-2504-8
[57] VIJAYAN A, FAUBEL S, ASKENAZI D J, et al. Clinical use of the urine biomarker[TIMP-2]×[IGFBP-7]forAcute kidney injury risk assessment[J]. Am J Kidney Dis, 2016, 68(1): 19-28. doi: 10.1053/j.ajkd.2015.12.033
[58] LEE T H, LEE C C, CHEN J J, et al. Assessment of cardiopulmonary bypass duration improves novel biomarker detection for predicting postoperative acute kidney injury after cardiovascular surgery[J]. J Clin Med, 2021, 10(13): 2741. doi: 10.3390/jcm10132741
[59] NARUSE H, ISHII J, TAKAHASHI H, et al. Urinary liver-type fatty-acid-binding protein predicts long-term adverse outcomes in medical cardiac intensive care units[J]. J Clin Med, 2020, 9(2): 482. doi: 10.3390/jcm9020482
[60] PELSERS M M A L, HERMENS W T, GLATZ J F C. Fatty acid-binding proteins as plasma markers of tissue injury[J]. Clin Chim Acta, 2005, 352(1/2): 15-35.
[61] MASSOTH C, ZARBOCK A. Diagnosis of cardiac surgery-associated acute kidney injury[J]. J Clin Med, 2021, 10(16): 3664. doi: 10.3390/jcm10163664
[62] OLVERA-POSADA D, DAYARATHNA T, DION M, et al. KIM-1 is a potential urinary biomarker of obstruction: results from a prospective cohort study[J]. J Endourol, 2017, 31(2): 111-118. doi: 10.1089/end.2016.0215
[63] 陈彩妹, 王凉, 李明秋, 等. 肾损伤分子-1在心脏体外循环术后急性肾损伤早期诊断中的应用[J]. 实用医学杂志, 2012, 28(13): 2203-2205. doi: 10.3969/j.issn.1006-5725.2012.13.039 [64] SEIBERT F S, HERINGHAUS A, PAGONAS N, et al. Dickkopf-3 in the prediction of contrast media induced acute kidney injury[J]. J Nephrol, 2021, 34(3): 821-828. doi: 10.1007/s40620-020-00910-1
[65] LIMA C, GORAB D L, FERNANDES C R, et al. Role of proenkephalin in the diagnosis of severe and subclinical acute kidney injury during the perioperative period of liver transplantation[J]. Pract Lab Med, 2022, 31: e00278. doi: 10.1016/j.plabm.2022.e00278
[66] HOLLINGER A, WITTEBOLE X, FRANÇOIS B, et al. Proenkephalin A 119-159(penkid) is an early biomarker of septic acute kidney injury: the kidney in sepsis and septic shock (kid-SSS) study[J]. Kidney Int Rep, 2018, 3(6): 1424-1433. doi: 10.1016/j.ekir.2018.08.006
[67] ZOU Y F, WEN D, ZHAO Q, et al. Urinary microRNA-30c-5p and microRNA-192-5p as potential biomarkers of ischemia-reperfusion-induced kidney injury[J]. Exp Biol Med, 2017, 242(6): 657-667. doi: 10.1177/1535370216685005
[68] ZHANG L L, XU Y, XUE S, et al. Implications of dynamic changes in miR-192 expression in ischemic acute kidney injury[J]. Int Urol Nephrol, 2017, 49(3): 541-550. doi: 10.1007/s11255-016-1485-7
[69] ARUN O, CELIK G, OC B, et al. Renal effects of coronary artery bypass graft surgery in diabetic and non-diabetic patients: a study with urinary neutrophil gelatinase-associated lipocalin and serum cystatin C[J]. Kidney Blood Press Res, 2015, 40(2): 141-152. doi: 10.1159/000368490
[70] ELMEDANY S M, NAGA S S, ELSHARKAWY R, et al. Novel urinary biomarkers and the early detection of acute kidney injury after open cardiac surgeries[J]. J Crit Care, 2017, 40: 171-177. doi: 10.1016/j.jcrc.2017.03.029
[71] MCILROY D R, FARKAS D, PAN K, et al. Combining novel renal injury markers with delta serum creatinine early after cardiac surgery and risk-stratification for serious adverse outcomes: an exploratory analysis[J]. J Cardiothorac Vasc Anesth, 2018, 32(5): 2190-2200. doi: 10.1053/j.jvca.2017.12.052
[72] MEISNER A, KERR K F, THIESSEN-PHILBROOK H, et al. Methodological issues in current practice may lead to bias in the development of biomarker combinations for predicting acute kidney injury[J]. Kidney Int, 2016, 89(2): 429-438. doi: 10.1038/ki.2015.283
-
期刊类型引用(2)
1. 张田,万乃君. 尿促性腺激素应用于女童性早熟诊治的研究进展. 检验医学与临床. 2024(10): 1497-1500 . 百度学术
2. 解淑钰,孟超,王琼瑾,周光中,金玉,赵映敏,曹唯慰,陶月红. 中枢性性早熟女童的诊断模型建立与验证. 交通医学. 2024(05): 489-493 . 百度学术
其他类型引用(1)