Bibliometrics and visual analysis of microdialysis technology in the field of pharmacokinetics
-
摘要:目的
对Web of Science(WOS)数据库中关于微透析技术在药代动力学领域的研究进行文献计量学与可视化分析。
方法以发文年份、国家和主题术语、关键词、高频引用文献等情况为指标, 统计分析WOS核心合集中微透析技术在药代动力学领域的相关文献。
结果共纳入604篇文献。2013—2015年,每年发文量均在55篇。2016—2023年,每年发文量稳定在60篇左右。近10年累计发文量呈线性增长。发文量最多的国家是中国(193篇)。2013—2018年"brain microdialysis" "mice" "Parkinson disease"等关键词出现较多。2019—2023年"morbidly obese" "children" "cerebral microdialysis" "bone" "surgical site infection" "antibiotic prophylaxis"等关键词出现较多。
结论目前,微透析技术在基础药代动力学领域应用广泛,未来其可能在外周组织给药、药物浓度监测及神经危重症监护等临床实践中发挥重要作用。
Abstract:ObjectiveTo implement metrological and visual analysis for literatures related to microdialysis technology in pharmacokinetic field in Web of Science database (WOS).
MethodsThe literature related to microdialysis technology in the field of pharmacokinetics in the core collection of WOS was analyzed, with the year of publication, country as well as subject terms, keywords and frequently cited references as indicators.
ResultsA total of 604 articles were included. From 2013 to 2015, the number of publications per year was 55. From 2016 to 2023, the number of publications per year stabilized at about 60. In the past 10 years, the cumulative number of published documents had shown a linear growth. The country with the highest number of articles was China (193 articles). From 2013 to 2018, the most common keywords were"brain microdialysis" "mice" and "Parkinson disease", etc. From 2019 to 2023, the most common keywords were "morbidly obese" "children" "cerebral microdialysis" "bone" "surgical site infection" and "antibiotic" prophylaxis", etc.
ConclusionAt present, microdialysis technology is widely used in the field of basic pharmacokinetics, and it may play an important role in clinical practice such as peripheral tissue delivery, drug concentration monitoring and neurocritical care in the future.
-
Keywords:
- microdialysis /
- pharmacokinetics /
- brain /
- anti-infection /
- bibliometrics /
- visualization
-
岛素依赖[1]。研究[2]表明, B细胞在自身免疫性糖尿病中发挥着不可替代的作用。B细胞消耗性抗体利妥昔单抗可延迟近期发病患者的T1DM进展。程序性死亡受体配体1(PD-L1)被认为是调节性B细胞的重要特征,其可通过与程序性死亡受体-1(PD-1)的直接相互作用调节免疫应答[3]。研究[4]表明, PD-L1阻断加速了非肥胖糖尿病(NOD)小鼠的糖尿病发病,提示PD-L1在T1DM中具有关键的保护作用。本课题组既往研究[5]发现,T1DM患者血清中的可溶性PD-L1水平降低。虽然B细胞的自身抗原递呈被认为可以启动自身免疫,但目前尚不清楚B细胞上的PD-L1是否参与了T1DM的发生。相关研究[6]表明,自身免疫性糖尿病患者循环中B细胞的频率发生了改变。本研究深入探讨这些B细胞,以期能更好地了解T1DM患者循环B细胞中PD-L1的表达。
1. 资料与方法
1.1 样本收集
本研究收集了2023年在苏州大学附属第二医院内分泌科就诊的患者血样。T1DM的诊断标准参照参考文献[7]。患者来自T1DM的各个阶段(T1DM组, n=25)。选取年龄、性别与T1DM患者相匹配的健康人群(健康对照组, n=25)。此外,健康人群自述健康,并经口服葡萄糖耐量试验(OGTT)证实无糖尿病,所有糖尿病自身抗体阴性,同时除外炎症、传染病、癌症或任何其他自身免疫性疾病。参与者知情并同意本研究。本研究已获得苏州大学附属第二医院伦理审查委员会批准。
1.2 临床指标收集
记录受试者的年龄、性别和病程等信息。检测肌酐(Cr)、尿素(BUN)、尿酸(UA)、白蛋白/肌酐(ACR)、丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)、甘油三酯(TG)、总胆固醇(TC)、高密度脂蛋白(HDL)、低密度脂蛋白(LDL)、空腹血糖(FPG)、糖化血红蛋白(HbA1c)、空腹c肽(FCP)。采用放射配体法检测胰岛自身抗体[谷氨酸脱羧酶自身抗体(GADA)、胰岛素瘤相关抗原2自身抗体(IA-2A)、锌转运蛋白8自身抗体(ZnT8A)]。
1.3 流式细胞术
通过静脉穿刺收集受试者4 mL外周血样本,采集的真空管中含有EDTA抗凝。在50 μL全血中加入异硫氰酸荧光素(FITC)、藻红蛋白(PE)、降钙素原(PCT)和藻蓝蛋白(APC)标记的抗人单抗,并以相应荧光标记的IgG1或IgG2作为同型对照。具体标色方案为: ① CD19-PE,PD-L1-FITC; ② CD19-PE,CD27-APC,PD-L1-FITC; ③ CD19-PE, CD5-APC, CD1d-PCT,PD-L1-FITC; ④ CD19-PE,CD21-APC, CD23-PCT, PD-L1-FITC。在室温避光孵育30 min后,用Beckman Coulter OptiLyse C裂解液进行红细胞溶解和细胞固定。磷酸盐缓冲液(PBS)洗涤2次后,取细胞悬液(500 μL/次),用COULTER Epics XL流式细胞仪(Beckman COULTER)检测。
1.4 统计学分析
流式细胞仪数据采用FlowJo软件进行分析。使用IBM SPSS 22.0和GraphPad Prism 6.0软件进行统计学分析。所有符合正态分布定量数据均以(x±s)表示。PD-L1在T1DM组和健康对照组之间的差异表达采用双侧t检验进行统计学分析。其他连续变量比较采用Mann-Whitney U检验。采用Pearson相关分析或Spearman非参数相关分析探讨PD-L1水平与其他指标的相关性。双侧P<0.05为差异有统计学意义。
2. 结果
2.1 2组B细胞和B细胞亚群表达
采用流式细胞术检测外周血CD19+细胞(B细胞)。T1DM组和健康对照组的B细胞频数比较,差异无统计学意义(P=0.08)。流式细胞术在外周血样本中识别出6个主要的CD19+ B细胞亚群: 幼稚B细胞(CD19+CD27+)、记忆B细胞(CD19+CD27+)、B10 (CD19+CD5+CD1d+)、边缘区B细胞(MZB)(CD19+CD23-CD21+)、滤泡B细胞(FoB)(CD19+CD23+CD21-)和过渡性T2-边缘区前体B细胞(T2-MZP)(CD19+CD23+CD21+)。T1DM组和健康对照组的B细胞亚群频率比较,差异无统计学意义(P>0.05)。在T1DM患者中,B细胞亚群的频率无系统性差异。见图 1。
2.2 B细胞亚群上PD-L1的表达
与健康对照组的(14.06±5.72)相比, T1DM组CD19+细胞上PD-L1的表达频率为(6.51±3.92), 差异有统计学意义(P<0.05)。T1DM组患者CD19+CD27+细胞上PD-L1表达为(13.43±10.45), CD19+CD27-细胞上PD-L1表达为(11.17±7.69); 健康对照组CD19+CD27+细胞上PD-L1表达为(23.57±9.81), CD19+CD27-细胞上PD-L1表达为(15.59±6.14)。T1DM组CD19+CD27+细胞、CD19+CD27-细胞上PD-L1的表达频率低于健康对照组,差异有统计学意义(P<0.05), 见图 2、图 3。2组PD-L1在B10[T1DM组为(18.15±8.48), 健康对照组为(23.44±17.75), P=0.19]、MZB[T1DM组为(19.71±12.89), 健康对照组为(21.22±8.04), P=0.62]和FoB[T1DM组为(41.50±24.15), 健康对照组为(41.77±23.08), P=0.97]细胞上的频率比较,差异无统计学意义。T1DM组PD-L1在T2-MZP细胞中表达频率(35.48±18.17)低于健康对照组(44.92±14.62), 差异有统计学意义(P=0.048 6), 见图 4、图 5。
2.3 临床特征与B细胞亚群PD-L1的相关性
T1DM患者的临床特征见表 1。MZB细胞表面PD-L1表达与BUN呈正相关(P<0.01); FoB细胞表面PD-L1表达与LDL水平呈负相关(P=0.016), 与HDL水平无相关性(P=0.268), 见表 2。
表 1 T1DM患者临床特征(n=25)(x±s)[M(IQR)]临床特征 数值 女性例数 12 胰岛自身抗体阳性例数 18 病程*/年 4.00(6.00) 高密度脂蛋白/(mmol/L) 1.54±0.68 低密度脂蛋白/(mmol/L) 2.61±1.01 胆固醇/(mmol/L) 4.42±1.43 甘油三酯*/(mmol/L) 0.77(0.57) 丙氨酸氨基转移酶/(U/L) 18.28±15.03 天冬氨酸转移酶/(U/L) 17.84±8.15 肌酐/(μmol/L) 56.04±14.19 尿素/(mmol/L) 4.88±1.53 尿酸/(μmol/L) 254.00±97.49 空腹血糖/(mmol/L) 9.80±4.85 空腹c肽*/(ng/mL) 0.08(0.34) 糖化血红蛋白/% 8.28±2.59 尿微量白蛋白肌酐比*/(mg/g) 11.45(12.50) *数据以中位数(四分位数间距)表示。 表 2 B细胞亚群PD-L1水平与临床特征之间的相关性指标 CD19+CD27+ CD19+CD27- B10 MZB FoB T2-MZP 女性 0.061 0.178 0.308 -0.233 -0.033 -0.044 胰岛自身抗体 0.259 0.080 0.178 0.074 0.321 0.012 病程 -0.114 0.196 -0.080 0.078 -0.138 -0.12 高密度脂蛋白 -0.31 0.024 0.287 0.101 -0.23 0.033 4 低密度脂蛋白 -0.062 -0.007 -0.133 -0.124 -0.477 -0.384 胆固醇 -0.042 -0.047 0.021 -0.075 -0.316 -0.163 甘油三酯 -0.011 0.115 0.022 -0.192 -0.325 -0.227 丙氨酸氨基转移酶 -0.017 0.128 0.095 -0.138 -0.296 -0.311 天冬氨酸转移酶 -0.067 0.156 0.11 -0.211 -0.333 -0.317 肌酐 0.097 0.022 -0.17 0.339 0.145 0.019 尿素 0.166 0.129 -0.108 0.619 0.138 0.199 尿酸 0.161 -0.089 -0.045 0.122 0.055 -0.125 空腹血糖 -0.017 -0.068 0.225 -0.188 0.273 0.048 空腹c肽 -0.041 -0.214 -0.212 0.320 0.330 0.214 糖化血红蛋白 -0.093 -0.130 -0.326 -0.259 0.104 -0.149 尿微量白蛋白肌酐比 -0.219 -0.335 0.109 -0.218 -0.120 -0.229 MZB: 边缘区B细胞; FoB: 滤泡B细胞; T2-MZP: 过渡性T2-边缘区前体B细胞。 3. 讨论
B细胞通过体液免疫直接发挥作用,并作为关键抗原提呈细胞在T细胞介导的自身免疫性糖尿病的启动过程中发挥作用[8]。研究[9]发现, T1DM患者的胰岛功能和血糖水平与B细胞亚群相关。自身免疫性糖尿病与抗PD-1/PD-L1抗体治疗有关,研究[10-11]表明T1DM患者CD4+ T细胞中PD-1的表达显著降低,表明PD-1/PD-L1通路在T1DM中对破坏β细胞起关键作用。本研究旨在探讨T1DM患者外周血中不同B细胞亚群上PD-L1的表达情况。本研究的主要发现为T1DM患者外周血B细胞,尤其是T2-MZP B细胞和记忆B细胞上PD-L1的表达水平降低。
B细胞在T1DM发生发展中的重要性已经在NOD小鼠中得到证实,缺乏B细胞的NOD小鼠不会发生T1DM[12]。同样,通过抗CD20单克隆抗体选择性消耗B细胞,可防止糖尿病的发生[2]。提示B细胞在T1DM的发生发展中有重要作用。B细胞亚群在免疫调节方面也发挥了重要作用,调节性B细胞通过白细胞介素-10 (IL-10)依赖的方式调节T细胞应答,在炎症、感染和自身免疫性疾病中发挥调节功能[13]。MZB细胞和FoB细胞作为重要的抗原递呈细胞,尤其是抗原特异性抗原递呈细胞,能够有效激活并促进CD4+ T细胞增殖[14]。自身抗原通过Toll样受体(TLR)激活B细胞,通过FasL诱导致病性T细胞凋亡,并通过分泌TGF-β抑制抗原递呈细胞的功能来破坏免疫耐受。本研究发现, CD19+ B细胞频率在T1DM组和健康对照组中无显著差异,这与既往研究结果相一致。本研究中, B细胞亚群频率在T1DM组和健康对照组中无显著差异。有研究[9]表明,与健康对照组和2型糖尿病(T2DM)患者相比, T1DM或LADA患者MZB细胞百分比增加,FoB细胞百分比降低。研究人群数量不足可能是导致这种差异的原因。
本研究还关注了B细胞上PD-L1的表达。PD-1/PD-L1在T细胞上的研究较多,在B细胞上的研究较少,但已知PD-1及其配体PD-L1可参与调节B细胞功能[15]。一项研究[16]表明, Treg上PD-1上调需要B细胞上PD-L1的表达,即B细胞通过PD-L1向Treg提供激活信号,从而抑制免疫应答。同时, B细胞可通过上调PD-L1的表达,抑制自身免疫病中的炎症反应,高表达PD-L1的B细胞通过减弱T细胞的活化和抗体的产生[17]而显著抑制体液反应。相反,缺乏PD-L1可能向T细胞提供抑制信号,导致免疫应答的激活。本研究发现, T1DM患者CD19+ B细胞上PD-L1的表达低于健康对照组,提示PD-L1的表达减低,导致对免疫应答的抑制减弱,进而导致了T1DM的发生。除总B细胞(CD19+)外,本研究还评估了B细胞亚群上PD-L1的表达。研究发现,与健康对照组相比,初始B细胞上的PD-L1表达无差异,但记忆性B细胞上的PD-L1表达较低。已有研究[18]表明,记忆性B细胞比初始B细胞反应更快、更剧烈。首先,记忆性B细胞比初始B细胞被更早招募进入分裂,经历更多的分裂轮数;其次,记忆B细胞具有更多细胞表面受体,如CD21、CD27和TACI, 这使得记忆B细胞能够更快、更迅速地对共刺激信号做出反应[19-20]; 再次,记忆性B细胞表达高水平的CD80和CD86, 这有助于向辅助性T细胞寻求帮助。因此提出以下假设: 由于PD-L1的表达水平减低,使记忆B细胞在T1DM的发病机制中发挥了更强的作用。
研究[21]表明,产生IL-10的B细胞(Breg)在T1DM的启动中发挥着不可或缺的作用。相关研究[22-23]在胶原诱导的关节炎小鼠模型中,发现分泌IL-10的B细胞表型为CD21+ CD23+。Breg细胞可以通过增加PD-L1的表达来抑制自身免疫病中的炎症反应[17]。因此, Breg细胞上PD-L1表达的降低可能促进自身免疫性糖尿病的炎症反应。本研究纳入的B细胞亚群中,只有T2-MZP上的PD-L1表达降低。这表明抑制T1DM中炎症的Breg可能是T2-MZP。探究B细胞亚群PD-L1水平与临床特征之间的相关性时,发现PD-L1在FoB细胞上的表达与LDL呈负相关,与既往研究[24]中血糖、血脂与免疫细胞相关的结果一致。
综上所述, T1DM患者B细胞表面PD-L1的表达频率较健康对照组低。PD-L1可能在T1DM的发病中起保护作用。PD-L1高表达的B细胞可能为自身免疫性糖尿病的治疗提供新的有效策略。但本研究存在一定局限,本研究未检测到IL-10和TGFb等炎性细胞因子,因此无法直接探讨PD-L1对B细胞功能的影响,还需进一步深入研究。
-
表 1 引用次数前10位的文献
文献 DOI 发表年份 引用次数/次 Evaluation of skin absorption of drugs from topical and transdermal formulations 10.159 0/S1984-82502016000300018 2016 133 Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567 10.111 1/bph. 12314 2013 128 Comparison of Intrapulmonary and Systemic Pharmacokinetics of Colistin Methanesulfonate (CMS) and Colistin after Aerosol Delivery and Intravenous Administration of CMS in Critically Ⅲ Patients 10.112 8/AAC. 03510-14 2014 123 Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in rats 10.310 9/1061186X. 2 014.888 070 2014 95 Reduced subcutaneous tissue distribution of cefazolin in morbidly obese versus non-obese patients determined using clinical microdialysis 10.109 3/jac/dkt444 2014 89 Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid 10.100 2/smll. 201905910 2020 82 Utility of CSF in translational neuroscience 10.100 7/s10928-013-9301-9 2013 71 Systemic and cerebral exposure to and pharmacokinetics of flavonols and terpene lactones after dosing standardized Ginkgo biloba leaf extracts to rats via different routes of administration 10.111 1/bph. 12285 2013 65 Improved blood-brain barrier distribution: Effect of borneol on the brain pharmacokinetics of kaempferol in rats by in vivo microdialysis sampling 10.101 6/j. jep. 2 015.01.003 2015 63 Enhanced Brain Delivery of the Opioid Peptide DAMGO in Glutathione PEGylated Liposomes: A Microdialysis Study 10.102 1/mp300272a 2013 63 -
[1] AZEREDO F J, DALLA COSTA T, DERENDORF H. Role of microdialysis in pharmacokinetics and pharmacodynamics: current status and future directions[J]. Clin Pharmacokinet, 2014, 53(3): 205-212. doi: 10.1007/s40262-014-0131-8
[2] CHAURASIA C S, MVLLER M, BASHAW E D, et al. AAPS-FDA workshop white paper: microdialysis principles, application and regulatory perspectives[J]. Pharm Res, 2007, 24(5): 1014-1025. doi: 10.1007/s11095-006-9206-z
[3] HAMMARLUND-UDENAES M. Microdialysis as an important technique in systems pharmacology-a historical and methodological review[J]. AAPS J, 2017, 19(5): 1294-1303. doi: 10.1208/s12248-017-0108-2
[4] ZHAO J Y, LI M. Worldwide trends in prediabetes from 1985 to 2022: a bibliometric analysis using bibliometrix R-tool[J]. Front Public Health, 2023, 11: 1072521. doi: 10.3389/fpubh.2023.1072521
[5] JAGER N G L, VAN HEST R M, LIPMAN J, et al. Antibiotic exposure at the site of infection: principles and assessment of tissue penetration[J]. Expert Rev Clin Pharmacol, 2019, 12(7): 623-634. doi: 10.1080/17512433.2019.1621161
[6] VAN ECK, NEES JAN, LUDO WALTMAN. "Software survey: VOSviewer, a computer program for bibliometric mapping. "[J]. Scientometrics vol. 84, 2 (2010): 523-538. doi: 10.1007/s11192-009-0146-3
[7] NIAZI M. Review of "CiteSpace: a practical guide for mapping scientific literature" by Chaomei Chen[J]. Complex Adapt Syst Modeling, 2016, 4: 1-3. doi: 10.1186/s40294-015-0013-4
[8] RUELA A L M, PERISSINATO A G, DE SOUSA LINO M E, et al. Evaluation of skin absorption of drugs from topical and transdermal formulations[J]. Braz J Pharm Sci, 2016, 52(3): 527-544. doi: 10.1590/s1984-82502016000300018
[9] BHATTACHARYA A, WANG Q, AO H, et al. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567[J]. Br J Pharmacol, 2013, 170(3): 624-640. doi: 10.1111/bph.12314
[10] ZHANG Q, WU D, WU J, et al. Improved blood-brain barrier distribution: effect of borneol on the brain pharmacokinetics of kaempferol in rats by in vivo microdialysis sampling[J]. J Ethnopharmacol, 2015, 162: 270-277. doi: 10.1016/j.jep.2015.01.003
[11] ZHU J X, ZHOU X W, KIM H J, et al. Gelatin methacryloyl microneedle patches for minimally invasive extraction of skin interstitial fluid[J]. Small, 2020, 16(16): e1905910. doi: 10.1002/smll.201905910
[12] YANG K, HU Y K, QI H Y. Digital health literacy: bibliometric analysis[J]. J Med Internet Res, 2022, 24(7): e35816. doi: 10.2196/35816
[13] KOZAI T D, JAQUINS-GERSTL A S, VAZQUEZ A L, et al. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies[J]. ACS Chem Neurosci, 2015, 6(1): 48-67. doi: 10.1021/cn500256e
[14] TǓMA P, SOMMEROVÁ B, DANĚĈEK V. On-line coupling of capillary electrophoresis with microdialysis for determining saccharides in dairy products and honey[J]. Food Chem, 2020, 316: 126362. doi: 10.1016/j.foodchem.2020.126362
[15] ROUX P L, MENON D K, CITERIO G, et al. The International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a list of recommendations and additional conclusions: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine[J]. Neurocrit Care, 2014, 21(Suppl 2): S282-S296.
[16] HUTCHINSON P J, JALLOH I, HELMY A, et al. Consensus statement from the 2014 international microdialysis forum[J]. Intensive Care Med, 2015, 41(9): 1517-1528. doi: 10.1007/s00134-015-3930-y
[17] SUN F M, ZENG J Z, JING M, et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice[J]. Cell, 2018, 174(2): 481-496, e19. doi: 10.1016/j.cell.2018.06.042
[18] FENG J S, ZHANG C M, LISCHINSKY J E, et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine[J]. Neuron, 2019, 102(4): 745-761, e8. doi: 10.1016/j.neuron.2019.02.037
[19] RANEY S G, FRANZ T J, LEHMAN P A, et al. Pharmacokinetics-based approaches for bioequivalence evaluation of topical dermatological drug products[J]. Clin Pharmacokinet, 2015, 54(11): 1095-1106. doi: 10.1007/s40262-015-0292-0
[20] BUSSE D, SIMON P, PETROFF D, et al. High-dosage fosfomycin results in adequate plasma and target-site exposure in morbidly obese and nonobese nonhyperfiltration patients[J]. Antimicrob Agents Chemother, 2022, 66(6): 1095-1096.
[21] DALMAGE M R, NWANKWO A, SUR H, et al. A scoping review of pediatric microdialysis: a missed opportunity for microdialysis in the pediatric neuro-oncology setting[J]. Neurooncol Adv, 2022, 4(1): vdac171.
[22] EJDRUP A L, WELLBOURNE-WOOD J, DREYER J K, et al. Within-mice comparison of microdialysis and fiber photometry-recorded dopamine biosensor during amphetamine response[J]. ACS Chem Neurosci, 2023, 14(9): 1622-1630. doi: 10.1021/acschemneuro.2c00817
[23] JADHAV S B, KHAOWROONGRUENG V, DERENDORF H. Microdialysis of large molecules[J]. J Pharm Sci, 2016, 105(11): 3233-3242. doi: 10.1016/j.xphs.2016.08.016
[24] GOWERS S A N, ROGERS M L, BOOTH M A, et al. Clinical translation of microfluidic sensor devices: focus on calibration and analytical robustness[J]. Lab Chip, 2019, 19(15): 2537-2548. doi: 10.1039/C9LC00400A
[25] MU F Y, ZHOU X G, FAN F, et al. A fluorescence biosensor for therapeutic drug monitoring of vancomycin using in vivo microdialysis[J]. Anal Chimica Acta, 2021, 1151: 338250. doi: 10.1016/j.aca.2021.338250
[26] STOVELL M G, HELMY A, THELIN E P, et al. An overview of clinical cerebral microdialysis in acute brain injury[J]. Front Neurol, 2023, 14: 1085540. doi: 10.3389/fneur.2023.1085540
[27] BARTLETT D W, WU A D, LI X R, et al. Development of an InVivo retrodialysis calibration method using stable isotope labeling to monitor metabolic pathways in the tumor microenvironment via microdialysis[J]. J Pharm Sci, 2019, 108(9): 3124-3129. doi: 10.1016/j.xphs.2019.05.016
[28] LASSARÉN P, LINDBLAD C, FROSTELL A, et al. Systemic inflammation alters the neuroinflammatory response: a prospective clinical trial in traumatic brain injury[J]. J Neuroinflammation, 2021, 18(1): 221. doi: 10.1186/s12974-021-02264-2
[29] JØRGENSEN A R, HANBERG P, BUE M, et al. Double-dose cefuroxime concentrations in bone, synovial fluid of the knee joint and subcutaneous adipose tissue-a randomised porcine microdialysis study[J]. Eur J Pharm Sci, 2021, 160: 105754. doi: 10.1016/j.ejps.2021.105754
[30] ZESTOS A G, LUNA-MUNGUIA H, STACEY W C, et al. Use and future prospects of in vivo microdialysis for epilepsy studies[J]. ACS Chem Neurosci, 2019, 10(4): 1875-1883. doi: 10.1021/acschemneuro.8b00271
[31] O′CONNELL M T, KREJCI J. Microdialysis techniques and microdialysis-based patient-near diagnostics[J]. Anal Bioanal Chem, 2022, 414(10): 3165-3175. doi: 10.1007/s00216-021-03830-6