Relationships of serum sclerostin and DKK-1 levels with severity of disease in patients with systemic lupus erythematosus
-
摘要:目的
探讨系统性红斑狼疮(SLE)患者血清骨硬化蛋白(Sclerostin)及Dickkopf-1(DKK-1)水平与疾病严重程度的关系。
方法选取2020年1月—2022年1月收治的126例SLE患者为SLE组,依据SLE疾病活动度评分(SLEDAI)将SLE组患者又分为轻度活动组(n=46)、中度活动组(n=42)和高度活动组(n=38);选取同期健康体检者70例为对照组。采用酶联免疫吸附实验检测2组血清Sclerostin和DKK-1水平。采用Pearson相关性分析探讨SLE组血清Sclerostin、DKK-1水平与生化指标的相关性。采用多因素Logistic回归模型分析影响SLE患者疾病严重程度的因素。采用受试者工作特征(ROC)曲线评价血清Sclerostin、DKK-1评估SLE患者疾病严重程度的价值。
结果SLE组血清Sclerostin、DKK-1、红细胞沉降率、抗双链DNA抗体(抗dsDNA抗体)高于对照组,白细胞计数、血红蛋白、淋巴细胞计数、血小板、补体C3及C4水平低于对照组,差异有统计学意义(P < 0.01)。Pearson相关性分析结果显示, SLE组患者血清Sclerostin、DKK-1水平与白细胞计数、血红蛋白、淋巴细胞计数、血小板、补体C3及C4呈负相关(P < 0.01), 与红细胞沉降率、抗dsDNA抗体呈正相关(P < 0.01)。高度活动组患者血清Sclerostin、DKK-1水平高于中度活动组和轻度活动组,中度活动组患者血清Sclerostin、DKK-1水平高于轻度活动组,差异均有统计学意义(P < 0.05)。血清Sclerostin、DKK-1升高是影响SLE疾病严重程度的独立危险因素。血清Sclerostin联合DKK-1对SLE疾病高度活动预测的曲线下面积(AUC)为0.919(95%CI: 0.862~0.956), 高于血清Sclerostin、DKK-1的0.833(Z=4.978, 95%CI: 0.809~0.851, P < 0.001)、0.841(Z=4.213, 95%CI: 0.810~0.867, P < 0.001)。
结论SLE患者血清Sclerostin、DKK-1表达水平升高,二者与SLE疾病严重程度有关,是影响SLE疾病严重程度的独立危险因素。血清Sclerostin联合DKK-1对SLE疾病严重程度具有较高的预测价值。
-
关键词:
- 系统性红斑狼疮 /
- 骨硬化蛋白 /
- Dickkopf-1 /
- 疾病严重程度 /
- 相关性
Abstract:ObjectiveTo explore the relationships of serum sclerostin and Dickkopf-1 (DKK-1) levels with severity of disease in patients with systemic lupus erythematosus (SLE).
MethodsA total of 126 patients with SLE from January 2020 to January 2022 were selected as SLE group, and the patients in the SLE group were divided into mild active group (n=46), moderate active group (n=42) and severe active group (n=38) according to SLE disease activity index (SLEDAI) score; 70 healthy people in the same period were selected as control group. The serum levels of Sclerostin and DKK-1 in both groups were detected by enzyme-linked immunosorbent assay. Pearson correlation analysis was used to explore the correlations of the serum Sclerostin and DKK-1 levels with biochemical indicators in the SLE group. Multivariate Logistic regression model was used to analyze the factors affecting the severity of disease in SLE patients. Receiver operating characteristic (ROC) curve was used to assess the values of serum Sclerostin and DKK-1 in evaluating the severity of disease in SLE patients.
ResultsSerum levels of Sclerostin, DKK-1, erythrocyte sedimentation rate and anti-double stranded DNA antibody (anti-dsDNA antibody) in the SLE group were significantly higher than those in the control group, while the levels of leukocyte count, hemoglobin, lymphocyte count, platelet, complement C3 and C4 were significantly lower than those in the control group (P < 0.01). Pearson correlation analysis results showed that serum levels of Sclerostin and DKK-1 in the SLE group were significantly negatively correlated with leukocyte count, hemoglobin, lymphocyte count, platelet, complement C3 and complement C4 (P < 0.01), and were significantly positively correlated with erythrocyte sedimentation rate and anti-dsDNA antibody (P < 0.01). The serum levels of Sclerostin and DKK-1 in the severe active group were significantly higher than those in the moderate active group and mild active group, and the serum levels of Sclerostin and DKK-1 in the moderate active group were significantly higher than those in the mild active group (P < 0.05). Elevated levels of serum Sclerostin and DKK-1 were the independent risk factors affecting the severity of SLE. The area under the curve (AUC) of serum Sclerostin combined with DKK-1 for predicting high activity of SLE was 0.919 (95%CI, 0.862 to 0.956), which was significantly higher than 0.833 of serum Sclerostin (Z=4.978, 95%CI, 0.809 to 0.851, P < 0.001) and 0.841 of DKK-1 (Z=4.213, 95%CI, 0.810 to 0.867, P < 0.001).
ConclusionThe increased expression levels of serum Sclerostin and DKK-1 in SLE patients are related to the severity of SLE, and are the independent risk factors affecting the severity of SLE. The combination of serum Sclerostin and DKK-1 has a high predictive value for the severity of SLE.
-
Keywords:
- systemic lupus erythematosus /
- sclerostin /
- Dickkopf-1 /
- severity of diseases /
- correlation
-
阿尔茨海默病(AD)是一种以β-淀粉样蛋白沉积和微管相关蛋白tau异常为特征的进行性神经退行性疾病,临床上表现为记忆和认知功能障碍、语言和行为能力缺失,患者后期表现出严重的失忆症和运动功能减弱,最终导致死亡[1]。尽管AD的特征性病理改变已明确,但靶向这些病理蛋白的药物疗效欠佳,因此进一步筛查有效靶点非常必要。本研究基于生物信息学分析筛选影响AD发生的核心基因和相关信号通路,现报告如下。
阿尔茨海默病(AD)是一种以β-淀粉样蛋白沉积和微管相关蛋白tau异常为特征的进行性神经退行性疾病,临床上表现为记忆和认知功能障碍、语言和行为能力缺失,患者后期表现出严重的失忆症和运动功能减弱,最终导致死亡[1]。尽管AD的特征性病理改变已明确,但靶向这些病理蛋白的药物疗效欠佳,因此进一步筛查有效靶点非常必要。本研究基于生物信息学分析筛选影响AD发生的核心基因和相关信号通路,现报告如下。
1. 数据与方法
1. 数据与方法
1.1 数据来源
以“Alzheimer′s disease”为关键词搜索基因表达综合(GEO)数据库,并下载GSE227221[2]和GSE162873[3]这2个RNA-seq原始数据集。其中, GSE227221数据集包含217个AD组织样本和226个对照神经组织样本, GSE162873数据集则包含8个AD组织样本。所有样本均从原始资料库下载,且病理资料完整。
1.1 数据来源
以“Alzheimer′s disease”为关键词搜索基因表达综合(GEO)数据库,并下载GSE227221[2]和GSE162873[3]这2个RNA-seq原始数据集。其中, GSE227221数据集包含217个AD组织样本和226个对照神经组织样本, GSE162873数据集则包含8个AD组织样本。所有样本均从原始资料库下载,且病理资料完整。
1.2 生物信息学分析方法
1.2 生物信息学分析方法
1.2.1 差异表达基因(DEGs)的筛选与分析
将GSE227221和GSE162873数据集导入GEO2R在线分析软件(该软件为交互式在线工具,能够比较2组或多组GEO序列数据,明确实验条件下哪些基因发生了显著变化)中,筛选出AD组织样本和正常脑组织样本之间的DEGs, 筛选标准为log2(FC)>1(FC为差异倍数)和P<0.05。
1.2.1 差异表达基因(DEGs)的筛选与分析
将GSE227221和GSE162873数据集导入GEO2R在线分析软件(该软件为交互式在线工具,能够比较2组或多组GEO序列数据,明确实验条件下哪些基因发生了显著变化)中,筛选出AD组织样本和正常脑组织样本之间的DEGs, 筛选标准为log2(FC)>1(FC为差异倍数)和P<0.05。
1.2.2 DEGs的疾病本体论(DO)、基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析
使用R软件DOSE包对DEGs进行DO基因富集分析。利用在线数据分析工具DAVID对筛选后的DEGs进行GO功能分析,包括生物学过程、细胞成分和分子功能共3个方面的内容,这有助于理解这些DEGs的生物学功能及其在细胞中的定位。利用在线分析工具DAVID进行KEGG通路富集分析,明确这些DEGs在生物学过程中的角色及其参与的生物学通路。分析结果以柱状图和气泡图形式展示, P<0.05表示差异有统计学意义。
1.2.2 DEGs的疾病本体论(DO)、基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析
使用R软件DOSE包对DEGs进行DO基因富集分析。利用在线数据分析工具DAVID对筛选后的DEGs进行GO功能分析,包括生物学过程、细胞成分和分子功能共3个方面的内容,这有助于理解这些DEGs的生物学功能及其在细胞中的定位。利用在线分析工具DAVID进行KEGG通路富集分析,明确这些DEGs在生物学过程中的角色及其参与的生物学通路。分析结果以柱状图和气泡图形式展示, P<0.05表示差异有统计学意义。
1.2.3 枢纽基因的筛选与分析
将筛选出的DEGs导入STRING在线数据库,进行蛋白质交互作用分析。STRING数据库提供了蛋白质之间已知和预测的相互作用信息,这些信息来源于共轭、实验室测试、共表达以及文献记录。本研究利用Cytoscape(版本3.7.2)软件构建蛋白质-蛋白质相互作用(PPI)网络。通过MCODE插件进行枢纽基因筛选,设置参数为关联程度阈值(Degree Cutoff)=2, 节点评分阈值(Node Score Cutoff)=0.2, 最小核心阈值(K-Core)=2, 最大深度(Max Depth)=100。这些参数有助于确定网络内高度相互连接的区域。
1.2.3 枢纽基因的筛选与分析
将筛选出的DEGs导入STRING在线数据库,进行蛋白质交互作用分析。STRING数据库提供了蛋白质之间已知和预测的相互作用信息,这些信息来源于共轭、实验室测试、共表达以及文献记录。本研究利用Cytoscape(版本3.7.2)软件构建蛋白质-蛋白质相互作用(PPI)网络。通过MCODE插件进行枢纽基因筛选,设置参数为关联程度阈值(Degree Cutoff)=2, 节点评分阈值(Node Score Cutoff)=0.2, 最小核心阈值(K-Core)=2, 最大深度(Max Depth)=100。这些参数有助于确定网络内高度相互连接的区域。
1.2.4 核心基因的筛选
根据MCODE评分,对枢纽基因进一步分析并筛选出核心基因。筛选条件为MCODE评分>10, 且评分由高到低排序。选取排名前6位的基因作为核心基因,推测其可能在AD的发生、进展及细胞凋亡过程中发挥关键作用。
1.2.4 核心基因的筛选
根据MCODE评分,对枢纽基因进一步分析并筛选出核心基因。筛选条件为MCODE评分>10, 且评分由高到低排序。选取排名前6位的基因作为核心基因,推测其可能在AD的发生、进展及细胞凋亡过程中发挥关键作用。
2. 结果
2. 结果
2.1 DEGs的筛选与分析
本研究从GSE227221和GSE162873数据集中共筛选出9 705个相关基因,其中GSE227221数据集筛选出7 293个相关基因, GSE162873数据集筛选出3 785个相关基因。将这2个数据集筛选出的基因取交集,共筛选出1 373个DEGs, 这些基因具有相同变化趋势,见图 1。
2.1 DEGs的筛选与分析
本研究从GSE227221和GSE162873数据集中共筛选出9 705个相关基因,其中GSE227221数据集筛选出7 293个相关基因, GSE162873数据集筛选出3 785个相关基因。将这2个数据集筛选出的基因取交集,共筛选出1 373个DEGs, 这些基因具有相同变化趋势,见图 1。
2.2 DO基因富集分析、GO基因富集分析和KEGG通路富集分析结果
DO基因富集分析结果显示,这些DEGs与系统性红斑狼疮、红斑狼疮和动脉硬化这3种疾病最为相关,见图 2。GO功能富集分析结果显示,这些DEGs主要富集于3条信号通路,即经典Wnt信号通路、磷脂酶C-活化G蛋白质-耦合受体通路和等离子体外侧膜通路,见图 3。KEGG信号通路富集分析结果显示,这些DEGs主要富集于以下通路,包括细胞因子-细胞因子受体相互作用、神经元活性配体-受体相互作用、癌症相关的转录失调,见图 4。
2.2 DO基因富集分析、GO基因富集分析和KEGG通路富集分析结果
DO基因富集分析结果显示,这些DEGs与系统性红斑狼疮、红斑狼疮和动脉硬化这3种疾病最为相关,见图 2。GO功能富集分析结果显示,这些DEGs主要富集于3条信号通路,即经典Wnt信号通路、磷脂酶C-活化G蛋白质-耦合受体通路和等离子体外侧膜通路,见图 3。KEGG信号通路富集分析结果显示,这些DEGs主要富集于以下通路,包括细胞因子-细胞因子受体相互作用、神经元活性配体-受体相互作用、癌症相关的转录失调,见图 4。
2.3 枢纽基因的筛选与分析
将DEGs导入STRING数据库,并利用Cytoscape软件构建PPI网络,该网络包含114个节点蛋白和76条边,见图 5。采用MCODE插件分析并挖掘网络中与AD诊断相关的基因,筛选出显著的相互作用模块,称为枢纽基因。本研究筛选出的枢纽基因网络包含61条边及20个节点蛋白,进一步筛选出的共同枢纽基因为 GIMAP1、GIMAP4、GIMAP5、GIMAP6、GIMAP7 及 GIMAP1-GIMAP5 。
2.3 枢纽基因的筛选与分析
将DEGs导入STRING数据库,并利用Cytoscape软件构建PPI网络,该网络包含114个节点蛋白和76条边,见图 5。采用MCODE插件分析并挖掘网络中与AD诊断相关的基因,筛选出显著的相互作用模块,称为枢纽基因。本研究筛选出的枢纽基因网络包含61条边及20个节点蛋白,进一步筛选出的共同枢纽基因为 GIMAP1、GIMAP4、GIMAP5、GIMAP6、GIMAP7 及 GIMAP1-GIMAP5 。
2.4 核心基因的筛选
应用Cytoscape软件中的MCODE插件,筛选条件设定为MCODE评分>10, 并按评分由高至低排序,选取前6个基因作为本研究的核心基因,即 GIMAP1、GIMAP4、GIMAP5、GIMAP6、GIMAP7 及 GIMAP1-GIMAP5 , 见图 6。
2.4 核心基因的筛选
应用Cytoscape软件中的MCODE插件,筛选条件设定为MCODE评分>10, 并按评分由高至低排序,选取前6个基因作为本研究的核心基因,即 GIMAP1、GIMAP4、GIMAP5、GIMAP6、GIMAP7 及 GIMAP1-GIMAP5 , 见图 6。
3. 讨论
痴呆是一种以记忆力、语言能力、执行能力和空间视觉能力进行性下降为特征的临床综合征,最终可导致个性和行为改变,丧失生活自理能力。目前, AD是痴呆的主要病因(占60%~80%)[4],这一现象部分归因于人口老龄化。据估计,全球范围内AD每年影响超过5 000万老年人,同时间接影响数千万AD患者配偶的生活,造成沉重的家庭负担和社会负担[5]。AD的发病机制尚未完全阐明。一小部分AD患者发病与3个基因的显性突变有关,分别为淀粉样前体蛋白(APP)、早老素1(PSEN1)和早老素2(PSEN2), 这些患者通常在65岁前发病[6]。大多数患者呈现散发趋势,发病年龄超过65岁。尽管AD没有明显的遗传性,但已有证据支持存在多种遗传风险因素,例如载脂蛋白E的E4等位基因存在于约16%的AD患者中。针对β-淀粉样蛋白开发的药物仅能缓解症状[7], 因此寻找新的治疗靶点至关重要。
本研究基于生物信息学分析对2个数据集的基因进行比对,共筛选出参与AD发生和进展的1 373个相同趋势的DEGs, 并筛选验证出核心基因GIMAP。人GIMAP基因全称GTP酶免疫相关蛋白,定位于第7号染色体,大小约为500 kb,包含7个功能性基因(GIMAP1、GIMAP2、GIMAP4、GIMAP5、GIMAP6、GIMAP7、GIMAP8)和1个假基因[8]。该基因此前被称为免疫相关核苷酸结合蛋白(IANs), 是一种小的GTP结合分子,具有共同的“AIG”GTP结合域,存在于高等植物和多细胞动物[9]。哺乳动物GIMAP基因(小鼠存在8个亚型,人类存在7个亚型[10])紧密聚集在一个单染色体位置上,这些基因优先表达于造血细胞和淋巴细胞,但近年来有研究[10]提示这些基因亦可表达于非血液细胞。本研究生物信息学分析也发现, GIMAP5 基因在AD神经组织中异常表达,提示AD与血液细胞或免疫细胞之间可能存在某种联系。
早在上世纪50年代,人们就观察到免疫功能异常与痴呆之间可能存在某种联系。1953年, GROSCH H[11]报道1名9岁女孩在接种咳嗽疫苗后,出现皮质下痴呆伴运动功能障碍。然而,随后的70年间,学者们并未发现痴呆或AD与免疫功能之间的确切关联。虽然免疫细胞对神经细胞有吞噬现象,可能对神经细胞造成免疫损伤[12-13],但并未发现这种损伤与AD病理改变如神经纤维缠结及Tau蛋白异常之间的直接联系。
GIMAP蛋白与GTPase在氨基末端序列相似,均包含鸟嘌呤核苷酸结合域[14-15]。这些蛋白大多参与了淋巴细胞的维持与发展。在小鼠模型中, GIMAP5的缺陷导致外周T细胞、B细胞和自然杀伤细胞(NK细胞)的数量减少[16-17]。GIMAP1对T细胞增殖的维持和B细胞功能的成熟至关重要[18-19]。GIMAP4可能促进T细胞的凋亡[20]。敲除GIMAP6使得Jurkat细胞系对凋亡诱导剂变得敏感[21]。鉴于GIMAP基因家族对维持免疫细胞功能的重要性[22], GIMAP基因的异常会导致免疫细胞功能障碍,从而减少免疫细胞对老化及异常神经元的清除和吞噬,增加痴呆或AD的发病风险。
本研究对筛选出的DEGs进行3种类型的富集分析,包括DO基因富集分析、GO功能富集分析和KEGG信号通路富集分析。DO基因富集分析结果显示,这些DEGs主要富集于系统性红斑狼疮、红斑狼疮和动脉硬化这3种疾病,而这3种疾病均与免疫功能异常有关[23-25]。系统性红斑狼疮和红斑狼疮均为自身免疫性疾病,与免疫功能异常关系密切,尽管动脉硬化与免疫功能异常无直接关系,但近年来的研究显示免疫功能异常参与动脉硬化的病理过程。GO功能富集分析结果显示, DEGs主要富集于经典Wnt信号通路、磷脂酶C-活化G蛋白质-耦合受体通路和等离子体外侧膜通路。值得注意的是,这3条信号通路均与GIMAP基因有关,存在一定的调控关系。KEGG信号通路富集分析结果显示,排名前3位的疾病通路分别为细胞因子-细胞因子受体相互作用、神经元活性配体-受体相互作用、癌症相关的转录失调。由此提示, AD与GIMAP基因及这些通路之间存在某种联系。
综上所述, GIMAP基因是AD发病的核心基因,其可能处于AD其他病理改变的上游。鉴于GIMAP基因与免疫功能维持的紧密关系,本研究推测AD是一种由免疫功能紊乱导致的疾病。
3. 讨论
痴呆是一种以记忆力、语言能力、执行能力和空间视觉能力进行性下降为特征的临床综合征,最终可导致个性和行为改变,丧失生活自理能力。目前, AD是痴呆的主要病因(占60%~80%)[4],这一现象部分归因于人口老龄化。据估计,全球范围内AD每年影响超过5 000万老年人,同时间接影响数千万AD患者配偶的生活,造成沉重的家庭负担和社会负担[5]。AD的发病机制尚未完全阐明。一小部分AD患者发病与3个基因的显性突变有关,分别为淀粉样前体蛋白(APP)、早老素1(PSEN1)和早老素2(PSEN2), 这些患者通常在65岁前发病[6]。大多数患者呈现散发趋势,发病年龄超过65岁。尽管AD没有明显的遗传性,但已有证据支持存在多种遗传风险因素,例如载脂蛋白E的E4等位基因存在于约16%的AD患者中。针对β-淀粉样蛋白开发的药物仅能缓解症状[7], 因此寻找新的治疗靶点至关重要。
本研究基于生物信息学分析对2个数据集的基因进行比对,共筛选出参与AD发生和进展的1 373个相同趋势的DEGs, 并筛选验证出核心基因GIMAP。人GIMAP基因全称GTP酶免疫相关蛋白,定位于第7号染色体,大小约为500 kb,包含7个功能性基因(GIMAP1、GIMAP2、GIMAP4、GIMAP5、GIMAP6、GIMAP7、GIMAP8)和1个假基因[8]。该基因此前被称为免疫相关核苷酸结合蛋白(IANs), 是一种小的GTP结合分子,具有共同的“AIG”GTP结合域,存在于高等植物和多细胞动物[9]。哺乳动物GIMAP基因(小鼠存在8个亚型,人类存在7个亚型[10])紧密聚集在一个单染色体位置上,这些基因优先表达于造血细胞和淋巴细胞,但近年来有研究[10]提示这些基因亦可表达于非血液细胞。本研究生物信息学分析也发现, GIMAP5 基因在AD神经组织中异常表达,提示AD与血液细胞或免疫细胞之间可能存在某种联系。
早在上世纪50年代,人们就观察到免疫功能异常与痴呆之间可能存在某种联系。1953年, GROSCH H[11]报道1名9岁女孩在接种咳嗽疫苗后,出现皮质下痴呆伴运动功能障碍。然而,随后的70年间,学者们并未发现痴呆或AD与免疫功能之间的确切关联。虽然免疫细胞对神经细胞有吞噬现象,可能对神经细胞造成免疫损伤[12-13],但并未发现这种损伤与AD病理改变如神经纤维缠结及Tau蛋白异常之间的直接联系。
GIMAP蛋白与GTPase在氨基末端序列相似,均包含鸟嘌呤核苷酸结合域[14-15]。这些蛋白大多参与了淋巴细胞的维持与发展。在小鼠模型中, GIMAP5的缺陷导致外周T细胞、B细胞和自然杀伤细胞(NK细胞)的数量减少[16-17]。GIMAP1对T细胞增殖的维持和B细胞功能的成熟至关重要[18-19]。GIMAP4可能促进T细胞的凋亡[20]。敲除GIMAP6使得Jurkat细胞系对凋亡诱导剂变得敏感[21]。鉴于GIMAP基因家族对维持免疫细胞功能的重要性[22], GIMAP基因的异常会导致免疫细胞功能障碍,从而减少免疫细胞对老化及异常神经元的清除和吞噬,增加痴呆或AD的发病风险。
本研究对筛选出的DEGs进行3种类型的富集分析,包括DO基因富集分析、GO功能富集分析和KEGG信号通路富集分析。DO基因富集分析结果显示,这些DEGs主要富集于系统性红斑狼疮、红斑狼疮和动脉硬化这3种疾病,而这3种疾病均与免疫功能异常有关[23-25]。系统性红斑狼疮和红斑狼疮均为自身免疫性疾病,与免疫功能异常关系密切,尽管动脉硬化与免疫功能异常无直接关系,但近年来的研究显示免疫功能异常参与动脉硬化的病理过程。GO功能富集分析结果显示, DEGs主要富集于经典Wnt信号通路、磷脂酶C-活化G蛋白质-耦合受体通路和等离子体外侧膜通路。值得注意的是,这3条信号通路均与GIMAP基因有关,存在一定的调控关系。KEGG信号通路富集分析结果显示,排名前3位的疾病通路分别为细胞因子-细胞因子受体相互作用、神经元活性配体-受体相互作用、癌症相关的转录失调。由此提示, AD与GIMAP基因及这些通路之间存在某种联系。
综上所述, GIMAP基因是AD发病的核心基因,其可能处于AD其他病理改变的上游。鉴于GIMAP基因与免疫功能维持的紧密关系,本研究推测AD是一种由免疫功能紊乱导致的疾病。
-
表 1 对照组和SLE组血清Sclerostin、DKK-1水平及临床指标比较(x±s)
指标 SLE组(n=126) 对照组(n=70) 白细胞计数/(×109/L) 3.47±0.54** 7.11±1.04 血红蛋白/(g/L) 94.98±11.54** 134.36±12.66 淋巴细胞计数/(×109/L) 0.86±0.18** 1.91±0.43 血小板/(×109/L) 113.76±21.33** 213.32±40.75 红细胞沉降率/(mm/h) 54.36±8.69** 5.64±1.27 血肌酐/(μmol/L) 69.27±5.21 68.33±4.29 血尿素氮/(mmol/L) 3.95±1.31 3.89±1.25 24 h尿蛋白/mg 54.76±9.11 53.47±10.23 抗dsDNA抗体/(U/L) 1.67±0.52** 0.44±0.09 补体C3/(g/L) 0.68±0.16** 1.17±0.24 补体C4/(g/L) 0.26±0.04** 0.51±0.15 Sclerostin/(ng/L) 202.46±21.68** 62.32±7.60 DKK-1/(μg/L) 12.31±2.57** 3.26±0.35 SLE: 系统性红斑狼疮; dsDNA: 双链DNA;
Sclerostin: 血清骨硬化蛋白; DKK-1: Dickkopf-1。
与对照组比较, * * P < 0.01。表 2 SLE组血清Sclerostin、DKK-1水平与临床指标的相关性
指标 Sclerostin DKK-1 r P r P 白细胞计数 -0.701 < 0.001 -0.713 < 0.001 血红蛋白 -0.567 < 0.001 -0.604 < 0.001 淋巴细胞计数 -0.551 < 0.001 -0.615 < 0.001 血小板 -0.668 < 0.001 -0.770 < 0.001 红细胞沉降率 0.667 < 0.001 0.621 < 0.001 血肌酐 0.231 0.458 0.313 0.301 血尿素氮 0.119 0.763 0.229 0.440 24 h尿蛋白定量 0.220 0.469 0.117 0.719 抗dsDNA抗体 0.703 < 0.001 0.716 < 0.001 补体C3 -0.564 < 0.001 -0.606 < 0.001 补体C4 -0.551 < 0.001 -0.745 < 0.001 表 3 不同疾病严重程度SLE患者血清Sclerostin、DKK-1水平的比较(x±s)
组别 n Sclerostin/(ng/L) DKK-1/(μg/L) 轻度活动组 46 180.16±20.09 10.05±2.36 中度活动组 42 203.46±21.77** 12.78±2.50** 高度活动组 38 228.35±22.69**## 14.53±2.67**## 与轻度活动组比较, * * P < 0.01;
与中度活动组比较, ##P < 0.01。表 4 多因素Logistic回归分析影响SLE疾病严重程度的因素
模型 变量 β SE Wald χ2 P OR(95%CI) 模型1 Sclerostin 0.245 0.054 20.585 < 0.001 1.278(1.149~1.420) DKK-1 0.239 0.067 12.725 < 0.001 1.670(1.114~1.448) 模型2 Sclerostin 0.298 0.161 3.426 0.219 1.347(0.983~1.847) DKK-1 0.286 0.117 5.975 < 0.001 1.331(1.058~1.674) 表 5 血清Sclerostin、DKK-1及二者联合对SLE疾病高度活动的预测价值
指标 AUC(95%CI) 约登指数 最佳截断值 敏感度 特异度 Sclerostin 0.833(0.809~0.851) 0.609 206.41 ng/L 0.725 0.884 DKK-1 0.841(0.810~0.867) 0.538 13.58 μg/L 0.687 0.851 联合模型 0.919(0.862~0.956) 0.683 — 0.902 0.781 -
[1] BARBER M R W, DRENKARD C, FALASINNU T, et al. Global epidemiology of systemic lupus erythematosus[J]. Nat Rev Rheumatol, 2021, 17(9): 515-532. doi: 10.1038/s41584-021-00668-1
[2] 陈群, 严远飞, 陈数, 等. 系统性红斑狼疮合并心脏损害的相关危险因素分析[J]. 实用临床医药杂志, 2022, 26(1)109-115. doi: 10.7619/jcmp.20212670 [3] TANAKA S, MATSUMOTO T. Sclerostin: from bench to bedside[J]. J Bone Miner Metab, 2021, 39(3): 332-340. doi: 10.1007/s00774-020-01176-0
[4] GARCIA-DE LOS RÍOS C, MEDINA-CASADO M, DÍAZ-CHAMORRO A, et al. Sclerostin as a biomarker of cardiovascular risk in women with systemic lupus erythematosus[J]. Sci Rep, 2022, 12: 21621. doi: 10.1038/s41598-022-25651-y
[5] LIU Q W, YING Y M, ZHOU J X, et al. Human amniotic mesenchymal stem cells-derived IGFBP-3, DKK-3, and DKK-1 attenuate liver fibrosis through inhibiting hepatic stellate cell activation by blocking Wnt/β-catenin signaling pathway in mice[J]. Stem Cell Res Ther, 2022, 13(1): 1-18. doi: 10.1186/s13287-021-02613-1
[6] XUE J, YANG J L, YANG L J, et al. Dickkopf-1 is a biomarker for systemic lupus erythematosus and active lupus nephritis[J]. J Immunol Res, 2017, 2017: 1-13.
[7] CECCARELLI F, PERRICONE C, MASSARO L, et al. Assessment of disease activity in Systemic Lupus Erythematosus: lights and shadows[J]. Autoimmun Rev, 2015, 14(7): 601-608. doi: 10.1016/j.autrev.2015.02.008
[8] Aringer M. EULAR/ACR classification criteria for SLE[J]. Semin Arthritis Rheum, 2019, 49(3): S14-S17. doi: 10.1016/j.semarthrit.2019.09.009
[9] YU H T, NAGAFUCHI Y, FUJIO K. Clinical and immunological biomarkers for systemic lupus erythematosus[J]. Biomolecules, 2021, 11(7): 928. doi: 10.3390/biom11070928
[10] LU C, SHAO X, ZHOU S, et al. LINC00176 facilitates CD4+T cell adhesion in systemic lupus erythematosus via the WNT5a signaling pathway by regulating WIF1[J]. Mol Immunol, 2021, 134: 202-209. doi: 10.1016/j.molimm.2021.02.018
[11] WANG J S, MAZUR C M, WEIN M N. Sclerostin and osteocalcin: candidate bone-produced hormones[J]. Front Endocrinol, 2021, 12: 584147. doi: 10.3389/fendo.2021.584147
[12] PACCOU J, MENTAVERRI R, RENARD C, et al. The relationships between serum sclerostin, bone mineral density, and vascular calcification in rheumatoid arthritis[J]. J Clin Endocrinol Metab, 2014, 99(12): 4740-4748. doi: 10.1210/jc.2014-2327
[13] HUANG X F, XIE M R, XIE Y L, et al. The roles of osteocytes in alveolar bone destruction in periodontitis[J]. J Transl Med, 2020, 18(1): 1-15. doi: 10.1186/s12967-019-02189-8
[14] DONHAM C, MANILAY J O. The effects of sclerostin on the immune system[J]. Curr Osteoporos Rep, 2020, 18(1): 32-37. doi: 10.1007/s11914-020-00563-w
[15] 陈露, 张寅, 刘松, 等. 系统性红斑狼疮患者CD154的表达与螺旋CT冠状动脉钙化积分的关系[J]. 临床与病理杂志, 2018, 38(8): 1625-1631. https://www.cnki.com.cn/Article/CJFDTOTAL-WYSB201808006.htm [16] BAETTA R, BANFI C. Dkk (dickkopf) proteins[J]. Arterioscler Thromb Vasc Biol, 2019, 39(7): 1330-1342. doi: 10.1161/ATVBAHA.119.312612
[17] TAO S S, CAO F, SAM N B, et al. Dickkopf-1 as a promising therapeutic target for autoimmune diseases[J]. Clin Immunol, 2022, 245: 109156. doi: 10.1016/j.clim.2022.109156
[18] MICELI-RICHARD C, TAYLOR K E, NITITHAM J, et al. Genetic contribution of DKK-1 polymorphisms to RA structural severity and DKK-1 level of expression[J]. Ann Rheum Dis, 2015, 74(7): 1480-1481. doi: 10.1136/annrheumdis-2014-206530
[19] LONG L, LIU Y Y, WANG S Y, et al. Dickkopf-1 as potential biomarker to evaluate bone erosion in systemic lupus erythematosus[J]. J Clin Immunol, 2010, 30(5): 669-675. doi: 10.1007/s10875-010-9436-z
[20] TAN W X, QIU Y, CHEN N, et al. The intervention of intestinal Wnt/β-catenin pathway alters inflammation and disease severity of CIA[J]. Immunol Res, 2021, 69(4): 323-333. doi: 10.1007/s12026-021-09190-8