Research progress on relationship between receptor tyrosine kinase-like orphan receptor 1 and signaling pathway of tumor cells
-
摘要:
受体酪氨酸激酶样孤儿受体1(ROR1)属于受体酪氨酸激酶(RTKs)大家族的一种表面跨膜蛋白, 在调控骨骼与神经的发育, 细胞迁移与细胞极性中有重要作用。ROR1在正常组织中表达低或不表达, 在肿瘤组织中高表达。研究发现ROR1能与配体螯合来调节Wnt等多种细胞信号通路, 从而在多种疾病尤其是恶性肿瘤中发挥重要的作用, 逐渐成为恶性肿瘤的治疗靶标。本文就ROR1在恶性肿瘤中与细胞信号通路相互作用及靶向ROR1肿瘤免疫治疗的研究进展进行综述, 为肿瘤临床治疗策略的制订提供参考。
-
关键词:
- 受体酪氨酸激酶样孤儿受体1 /
- 恶性肿瘤 /
- 细胞内信号通路 /
- 肿瘤免疫治疗
Abstract:Receptor tyrosine kinase-like orphan receptor 1 (ROR1) belongs to the transmembrane protein family of receptor tyrosine kinases (RTKs), and plays an important role in regulating the development of bones and nerves as well as cell migration and cell polarity. ROR1 is expressed at low or no levels in normal tissues, but is highly expressed in tumor tissues. Researches have found that ROR1 can regulate various cell signaling pathways such as Wnt through chelating with ligand, thereby playing an important role in multiple diseases, especially malignant tumors, and gradually become a therapeutic target for malignant tumors. This paper reviewed the interactions between ROR1 and cell signaling pathways in malignant tumors, the researches on targeted ROR1 tumor immunotherapy in order to provide references for clinical therapeutic strategies for tumors.
-
结直肠癌是临床常见的恶性肿瘤之一,发病率呈逐年升高趋势。近年来,随着治疗方法的进步,结直肠癌患者的预后得以改善,但分期较晚、远处转移患者的预后仍不佳[1]。因此,探寻结直肠癌早期诊断与预后评估相关的分子标志物成为该研究领域的热点。Rictor蛋白是哺乳动物雷帕霉素靶蛋白复合物2(mTORC2)的成员,参与调控哺乳动物雷帕霉素靶蛋白(mTOR)信号通路。相关研究[2]表明, Rictor蛋白在结肠癌组织中高表达,与结肠癌的发生与发展有关。另有研究[3-4]提出,微小RNA-152(miR-152)和微小RNA-448(miR-448)可靶向调控Rictor蛋白而抑制结直肠癌细胞增殖。本研究观察Rictor蛋白在结直肠癌组织中的表达情况,并分析其与临床病理特征、预后的关系,现报告如下。
1. 资料与方法
1.1 一般资料
选取2014年6月—2018年6月在本院接受结直肠癌根治术治疗并经病理组织学检查确诊的90例结直肠癌患者作为研究对象。纳入标准: ①临床资料、病理数据无缺失者; ②经病理明确诊断结直肠癌者; ③术前未接受放化疗、免疫治疗等抗肿瘤治疗者; ④对本研究知情并签订书面同意书者。排除标准: ①存在其他器官恶性肿瘤者; ②怀孕期或哺乳期女性; ③近期接受过免疫抑制剂治疗,或存在严重感染者。90例患者中,男51例,女39例; 年龄44~78岁,平均(60.6±12.3)岁; 肿瘤部位为左侧结肠28例、右侧结肠31例、直肠31例; TNM分期为Ⅰ期30例、Ⅱ期40例、Ⅲ期20例; 肿瘤最大直径为1.5~5.5 cm, 平均(2.9±1.3) cm; 分化程度为低分化23例、中分化49例、高分化18例; 合并淋巴结转移30例; 浸润深度为T1期10例、T2期11例、T3期42例、T4期27例。收集90例患者的结直肠癌组织标本,并取对应的距癌组织5 cm处的正常结直肠组织作为对照,所有癌旁组织均经苏木素-伊红(HE)染色明确无癌细胞。
1.2 免疫组织化学方法
制备5 μm切片,实施脱蜡、脱水、水化等步骤,加入鼠抗人Rictor一抗(1 ∶ 50, 货号ab1203, 美国Sigma公司),置于4 ℃冰箱过夜,用磷酸盐缓冲溶液(PBS)冲洗3次,加入兔抗鼠二抗(1 ∶ 100, 货号M282, 大连宝生物有限公司), 37 ℃孵育30 min, 用PBS冲洗3次,加入二氨基联苯胺(DAB)显色,封片,于光学显微镜下观察。半定量分析评分方法[2]: ①细胞质染色强度评分,无黄染为0分,淡黄色为1分,棕黄色为2分,黄褐色为3分; ②阳性细胞百分比≤5%为0分, >5%~25%为1分, >25%~50%为2分, >50%~75%为3分, >75%为4分。以①与②评分乘积表示Rictor蛋白表达水平,参照全部患者的平均分值(4.23分),将 < 4.23分判定为低表达, ≥4.23分判定为高表达。
1.3 随访方法
对所有患者进行随访(门诊随访、电话随访等方式),随访截止日期为2021年6月30日,随访时间为12~36个月,中位时间34个月,平均(34.1±8.0)个月,采用总体生存率对患者进行预后评价。
1.4 统计学分析
采用SPSS 20.0统计学软件分析数据, Rictor蛋白阳性表达情况、生存率等计数资料以[n(%)]、百分率(%)描述,比较行χ2检验。采用Kaplan-Meier法绘制结直肠癌组织Rictor蛋白低表达、高表达患者的生存曲线,采用Log-Rank检验对生存率进行比较,并采用单因素和多因素Cox回归分析探讨结直肠癌预后的影响因素。P < 0.05为差异有统计学意义。
2. 结果
2.1 Rictor蛋白在癌旁正常结直肠组织和结直肠癌组织中的表达情况
Rictor蛋白阳性表达细胞的染色表现为核周及细胞质内出现棕黄色或棕褐色颗粒。结直肠癌组织中Rictor蛋白阳性表达率为55.6%(50/90), 高于癌旁正常结直肠组织的11.1%(10/90), 差异有统计学意义(χ2=40.034, P < 0.001)。见图 1。
2.2 结直肠癌组织中Rictor蛋白阳性表达与临床病理特征的关系
结直肠癌组织中Rictor蛋白阳性表达率与肿瘤最大直径、浸润深度、TNM分期、分化程度和淋巴结转移有关(P < 0.05), 与性别、年龄及肿瘤部位无关(P>0.05), 见表 1。
表 1 不同临床病理特征患者结直肠癌组织中Rictor蛋白阳性表达情况比较[n(%)]特征 分类 n Rictor蛋白阳性表达 χ2 P 性别 男 51 28(54.9) 0.523 0.462 女 39 22(56.4) 年龄 < 60岁 47 24(51.1) 0.682 0.402 ≥60岁 43 26(60.5) 肿瘤最大直径 < 3 cm 46 21(45.7) 6.521 0.014 ≥3 cm 44 29(65.9) 肿瘤部位 左侧结肠 28 14(50.0) 0.463 0.615 右侧结肠 31 19(61.3) 直肠 31 17(54.8) 浸润深度 T1~T2期 21 6(28.6) 11.623 < 0.001 T3~T4期 69 44(63.8) TNM分期 Ⅰ期 30 11(36.7) 9.727 < 0.001 Ⅱ期 40 24(60.0) Ⅲ期 20 15(75.0) 分化程度 低分化 23 19(82.6) 14.886 < 0.001 中分化 49 24(49.0) 高分化 18 7(38.9) 淋巴结转移 有 30 22(73.3) 8.734 < 0.001 无 60 28(46.7) 2.3 Rictor蛋白表达与结直肠癌患者预后的关系
本研究90例结直肠癌患者均未失访,结直肠癌组织Rictor蛋白低表达患者的总体生存率高于Rictor蛋白高表达患者,差异有统计学意义(P < 0.05), 见图 2。
2.4 结直肠癌患者预后的单因素、多因素Cox回归分析
将患者是否死亡作为因变量,将性别(男、女)、年龄(< 60岁、≥60岁)、肿瘤部位(右侧结肠、左侧结肠、直肠)、Rictor蛋白(低表达、高表达)、肿瘤最大直径(< 3 cm、≥3 cm)、浸润深度(T1~T2期、T3~T4期)、TNM分期(Ⅰ~Ⅱ期、Ⅲ期)、分化程度(高分化、低中分化)和淋巴结转移(有、无)作为自变量,进行单因素、多因素Cox回归分析。分析结果显示, Rictor蛋白高表达、TNM分期Ⅲ期是结直肠癌患者死亡的独立危险因素(P < 0.05), 见表 2。
表 2 结直肠癌患者预后的单因素、多因素Cox回归分析因素 单因素分析 多因素分析 HR 95%CI P HR 95%CI P Rictor蛋白 2.491 1.193~5.201 0.015 2.401 1.103~5.230 0.026 性别 0.894 0.491~1.635 0.718 — — — 年龄 1.174 0.626~2.202 0.618 — — — 肿瘤最大直径 2.766 1.512~5.061 0.001 0.888 0.323~2.441 0.818 肿瘤部位 0.962 0.751~1.234 0.761 — — — TNM分期 2.037 1.194~3.473 0.009 2.319 1.268~4.242 0.006 淋巴结转移 3.003 1.541~5.857 0.001 1.052 0.355~3.120 0.927 分化程度 2.001 1.426~2.811 0.001 1.939 0.839~4.478 0.121 浸润深度 2.189 1.014~4.727 0.046 1.072 0.470~2.448 0.868 3. 讨论
结直肠癌是一种异质性肿瘤,其机制目前尚未阐明。基因组学研究[5]发现,结直肠癌组织中众多基因呈差异性表达。尽管免疫靶向治疗等治疗手段可大大改善结直肠癌患者的预后,提升患者的生活质量,但目前临床尚未发现有效的分子靶点。大量研究[6-8]发现,肿瘤浸润深度、TNM分期、分化程度和淋巴结转移等临床病理特征与结直肠癌预后有关。因此,寻找与临床病理特征及预后有关的分子标志物对于结直肠癌的早期诊断和预后评估具有重要意义。
Rictor蛋白属于mTORC2的成员,在肿瘤增殖、迁移、侵袭和上皮间质转化(EMT)等过程中发挥着重要作用[9-11]。研究[12]发现, Rictor蛋白在子宫内膜癌组织中高表达,是患者预后的独立危险因素。此外, Rictor蛋白在多种消化道肿瘤组织中高表达,且与患者的预后有关[13-15]。本研究采用免疫组织化学方法检测结直肠癌组织中Rictor蛋白表达情况,发现Rictor蛋白在结直肠癌组织中高表达,与相关研究[16]结论基本一致。黄仕思等[17]研究发现,沉默Rictor表达可抑制肝癌细胞的恶性生物学行为及EMT过程。由此推测, Rictor可能通过促进EMT而增加肿瘤细胞的恶性生物学行为。
临床病理特征是反映肿瘤进展和预测肿瘤患者预后的可靠指标。本研究分析Rictor蛋白与结直肠癌患者临床病理特征的关系后发现, Rictor蛋白阳性表达率与肿瘤最大直径、浸润深度、TNM分期、分化程度和淋巴结转移有关,提示Rictor蛋白与结直肠癌恶性生物学行为有关。本研究结果显示, Rictor蛋白高表达患者的总体生存率低于Rictor蛋白低表达患者,且Rictor蛋白高表达是结直肠癌患者死亡的独立危险因素。由此提示, Rictor蛋白高表达可能与结直肠癌患者的低生存率有关,推测Rictor蛋白通过调控肿瘤细胞EMT促进细胞侵袭、转移等恶性生物学过程,进而影响患者的预后[18]。但Rictor蛋白对结直肠癌的影响有待细胞功能实验和动物实验证实,且其具体作用机制也有待探索。
综上所述, Rictor蛋白在结直肠癌组织中高表达,且Rictor蛋白表达情况与结直肠癌患者临床病理特征和预后有关,但Rictor蛋白通过何种通路发挥作用尚需进一步开展体内外实验加以明确。
-
[1] MASIAKOWSKI P, CARROLL R D. A novel family of cell surface receptors with tyrosine kinase-like domain[J]. J Biol Chem, 1992, 267(36): 26181-26190. doi: 10.1016/S0021-9258(18)35733-8
[2] GHADERI A, OKHOVAT M A, WIKANTHI L S S, et al. A ROR1 small molecule inhibitor (KAN0441571C) induced significant apoptosis of ibrutinib-resistant ROR1+ CLL cells[J]. EJHaem, 2021, 2(3): 498-502. doi: 10.1002/jha2.232
[3] HOJJAT-FARSANGI M, MOSHFEGH A, SCHULTZ J, et al. Targeting the receptor tyrosine kinase ROR1 by small molecules[J]. Handb Exp Pharmacol, 2021, 269: 75-99.
[4] KIPPS T J. ROR1: an orphan becomes apparent[J]. Blood, 2022, 140(14): 1583-1591. doi: 10.1182/blood.2021014760
[5] ZHAO Y M, ZHANG D Y, GUO Y, et al. Tyrosine kinase ROR1 as a target for anti-cancer therapies[J]. Front Oncol, 2021, 11: 680834. doi: 10.3389/fonc.2021.680834
[6] RIM E Y, CLEVERS H, NUSSE R. The Wnt pathway: from signaling mechanisms to synthetic modulators[J]. Annu Rev Biochem, 2022, 91: 571-598. doi: 10.1146/annurev-biochem-040320-103615
[7] NEUHAUS J, WEIMANN A, BERNDT-PAETZ M. Immunocytochemical analysis of endogenous frizzled-(co-) receptor interactions and rapid Wnt pathway activation in mammalian cells[J]. Int J Mol Sci, 2021, 22(21): 12057. doi: 10.3390/ijms222112057
[8] MENCK K, HEINRICHS S, BADEN C, et al. The WNT/ROR pathway in cancer: from signaling to therapeutic intervention[J]. Cells, 2021, 10(1): 142. doi: 10.3390/cells10010142
[9] MA F, ARAI S, WANG K S, et al. Autocrine canonical Wnt signaling primes noncanonical signaling through ROR1 in metastatic castration-resistant prostate cancer[J]. Cancer Res, 2022, 82(8): 1518-1533. doi: 10.1158/0008-5472.CAN-21-1807
[10] FUKUDA T, CHEN L G, ENDO T, et al. Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal antigen and receptor for Wnt5a[J]. Proc Natl Acad Sci USA, 2008, 105(8): 3047-3052. doi: 10.1073/pnas.0712148105
[11] GHADERI A, DANESHMANESH A H, MOSHFEGH A, et al. ROR1 is expressed in diffuse large B-cell lymphoma (DLBCL) and a small molecule inhibitor of ROR1(KAN0441571C) induced apoptosis of lymphoma cells[J]. Biomedicines, 2020, 8(6): 170. doi: 10.3390/biomedicines8060170
[12] HASAN M K, GHIA E M, RASSENTI L Z, et al. Wnt5a enhances proliferation of chronic lymphocytic leukemia and ERK1/2 phosphorylation via a ROR1/DOCK2-dependent mechanism[J]. Leukemia, 2021, 35(6): 1621-1630. doi: 10.1038/s41375-020-01055-7
[13] HASAN M K, WIDHOPF G F 2nd, ZHANG S P, et al. Wnt5a induces ROR1 to recruit cortactin to promote breast-cancer migration and metastasis[J]. NPJ Breast Cancer, 2019, 5: 35. doi: 10.1038/s41523-019-0131-9
[14] HASAN M K, YU J, CHEN L, et al. Wnt5a induces ROR1 to complex with HS1 to enhance migration of chronic lymphocytic leukemia cells[J]. Leukemia, 2017, 31(12): 2615-2622. doi: 10.1038/leu.2017.133
[15] SUTHON S, LIN J J, PERKINS R S, et al. Estrogen receptor alpha and NFATc1 bind to a bone mineral density-associated SNP to repress WNT5B in osteoblasts[J]. Am J Hum Genet, 2022, 109(1): 97-115. doi: 10.1016/j.ajhg.2021.11.018
[16] KATOH M. WNT/PCP signaling pathway and human cancer (review)[J]. Oncol Rep, 2005, 14(6): 1583-1588.
[17] BAI Y, LIU C D, ZHOU J F, et al. Molecular, functional, and gene expression analysis of zebrafish Ror1 receptor[J]. Fish Physiol Biochem, 2019, 45(1): 355-363. doi: 10.1007/s10695-018-0567-0
[18] WEISSENBÖCK M, LATHAM R, NISHITA M, et al. Genetic interactions between Ror2 and Wnt9a, Ror1 and Wnt9a and Ror2 and Ror1: Phenotypic analysis of the limb skeleton and palate in compound mutants[J]. Genes Cells, 2019, 24(4): 307-317. doi: 10.1111/gtc.12676
[19] TEUFEL S, WOLFF L, KÖNIG U, et al. Mice lacking Wnt9a or Wnt4 are prone to develop spontaneous osteoarthritis with age and display alteration in either the trabecular or cortical bone compartment[J]. J Bone Miner Res, 2022, 37(7): 1335-1351. doi: 10.1002/jbmr.4569
[20] KAMIZAKI K, ENDO M, MINAMI Y, et al. Role of noncanonical Wnt ligands and Ror-family receptor tyrosine kinases in the development, regeneration, and diseases of the musculoskeletal system[J]. Dev Dyn, 2021, 250(1): 27-38. doi: 10.1002/dvdy.151
[21] TEH M T, BLAYDON D, GHALI L R, et al. Role for WNT16B in human epidermal keratinocyte proliferation and differentiation[J]. J Cell Sci, 2007, 120(Pt 2): 330-339.
[22] KARVONEN H, PERTTILÄ R, NIININEN W, et al. Wnt5a and ROR1 activate non-canonical Wnt signaling via RhoA in TCF3-PBX1 acute lymphoblastic leukemia and highlight new treatment strategies via Bcl-2 co-targeting[J]. Oncogene, 2019, 38(17): 3288-3300. doi: 10.1038/s41388-018-0670-9
[23] AKBARZADEH M, MIHANFAR A, AKBARZADEH S, et al. Crosstalk between miRNA and PI3K/AKT/mTOR signaling pathway in cancer[J]. Life Sci, 2021, 285: 119984. doi: 10.1016/j.lfs.2021.119984
[24] KARVONEN H, CHIRON D, NIININEN W, et al. Crosstalk between ROR1 and BCR pathways defines novel treatment strategies in mantle cell lymphoma[J]. Blood Adv, 2017, 1(24): 2257-2268. doi: 10.1182/bloodadvances.2017010215
[25] FRENQUELLI M, CARIDI N, ANTONINI E, et al. The WNT receptor ROR2 drives the interaction of multiple myeloma cells with the microenvironment through AKT activation[J]. Leukemia, 2020, 34(1): 257-270. doi: 10.1038/s41375-019-0486-9
[26] ZHANG Q, WANG H Y, LIU X B, et al. Cutting edge: ROR1/CD19 receptor complex promotes growth of mantle cell lymphoma cells independently of the B cell receptor-BTK signaling pathway[J]. J Immunol, 2019, 203(8): 2043-2048. doi: 10.4049/jimmunol.1801327
[27] MAO Y, XU L, WANG J, et al. ROR1 associates unfavorable prognosis and promotes lymphoma growth in DLBCL by affecting PI3K/Akt/mTOR signaling pathway[J]. Biofactors, 2019, 45(3): 416-426. doi: 10.1002/biof.1498
[28] LONG M P, WANG H L, LUO Y B, et al. Targeting ROR1 inhibits epithelial to mesenchymal transition in human lung adenocarcinoma via mTOR signaling pathway[J]. Int J Clin Exp Pathol, 2018, 11(10): 4759-4770.
[29] SANCHEZ-LOPEZ E, GHIA E M, ANTONUCCI L, et al. NF-κB-p62-NRF2 survival signaling is associated with high ROR1 expression in chronic lymphocytic leukemia[J]. Cell Death Differ, 2020, 27(7): 2206-2216. doi: 10.1038/s41418-020-0496-1
[30] ZHOU Q, ZHOU S Y, WANG H L, et al. Stable silencing of ROR1 regulates cell cycle, apoptosis, and autophagy in a lung adenocarcinoma cell line[J]. Int J Clin Exp Pathol, 2020, 13(5): 1108-1120.
[31] WANG H L, LIU Y C, LONG M P, et al. Blocking ROR1 enhances the roles of erlotinib in lung adenocarcinoma cell lines[J]. Oncol Lett, 2019, 18(3): 2977-2984.
[32] LIU Y C, YANG H, CHEN T X, et al. Silencing of receptor tyrosine kinase ROR1 inhibits tumor-cell proliferation via PI3K/AKT/mTOR signaling pathway in lung adenocarcinoma[J]. PLoS One, 2015, 10(5): e0127092. doi: 10.1371/journal.pone.0127092
[33] YAMAGUCHI T, YANAGISAWA K, SUGIYAMA R, et al. NKX2-1/TITF1/TTF-1-Induced ROR1 is required to sustain EGFR survival signaling in lung adenocarcinoma[J]. Cancer Cell, 2012, 21(3): 348-361. doi: 10.1016/j.ccr.2012.02.008
[34] FULTANG N, ILLENDULA A, LIN J H, et al. ROR1 regulates chemoresistance in Breast Cancer via modulation of drug efflux pump ABCB1[J]. Sci Rep, 2020, 10(1): 1821. doi: 10.1038/s41598-020-58864-0
[35] FULTANG N, ILLENDULA A, CHEN B, et al. Strictinin, a novel ROR1-inhibitor, represses triple negative breast cancer survival and migration via modulation of PI3K/AKT/GSK3 activity[J]. PLoS One, 2019, 14(5): e0217789. doi: 10.1371/journal.pone.0217789
[36] DAI B, SHEN Y C, YAN T, et al. Wnt5a/ROR1 activates DAAM1 and promotes the migration in osteosarcoma cells[J]. Oncol Rep, 2020, 43(2): 601-608.
[37] CHEN J, YUE C Y, XU J E, et al. Downregulation of receptor tyrosine kinase-like orphan receptor 1 in preeclampsia placenta inhibits human trophoblast cell proliferation, migration, and invasion by PI3K/AKT/mTOR pathway accommodation[J]. Placenta, 2019, 82: 17-24. doi: 10.1016/j.placenta.2019.05.002
[38] ZENG Z X, GU S S, OUARDAOUI N, et al. Hippo signaling pathway regulates cancer cell-intrinsic MHC-Ⅱ expression[J]. Cancer Immunol Res, 2022, 10(12): 1559-1569. doi: 10.1158/2326-6066.CIR-22-0227
[39] XIAO Y, DONG J X. The hippo signaling pathway in cancer: a cell cycle perspective[J]. Cancers, 2021, 13(24): 6214. doi: 10.3390/cancers13246214
[40] LI C L, WANG S Y, XING Z, et al. A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis[J]. Nat Cell Biol, 2017, 19(2): 106-119. doi: 10.1038/ncb3464
[41] ISLAM S S, UDDIN M, NOMAN A S M, et al. Antibody-drug conjugate T-DM1 treatment for HER2+ breast cancer induces ROR1 and confers resistance through activation of Hippo transcriptional coactivator YAP1[J]. EBioMedicine, 2019, 43: 211-224. doi: 10.1016/j.ebiom.2019.04.061
[42] KARVONEN H, BARKER H, KALEVA L, et al. Molecular mechanisms associated with ROR1-mediated drug resistance: crosstalk with hippo-YAP/TAZ and BMI-1 pathways[J]. Cells, 2019, 8(8): 812. doi: 10.3390/cells8080812
[43] NADANAKA S, TAMURA J I, KITAGAWA H. Chondroitin sulfates control invasiveness of the basal-like breast cancer cell line MDA-MB-231 through ROR1[J]. Front Oncol, 2022, 12: 914838. doi: 10.3389/fonc.2022.914838
[44] KATOH M, KATOH M. Molecular genetics and targeted therapy of WNT-related human diseases (Review)[J]. Int J Mol Med, 2017, 40(3): 587-606.
[45] ZHANG J, ZHANG W, ZHANG Q L. Ectopic expression of ROR1 prevents cochlear hair cell loss in guinea pigs with noise-induced hearing loss[J]. J Cell Mol Med, 2020, 24(16): 9101-9113. doi: 10.1111/jcmm.15545
[46] IROEGBU J D, IJOMONE O K, FEMI-AKINLOSOTU O M, et al. ERK/MAPK signalling in the developing brain: Perturbations and consequences[J]. Neurosci Biobehav Rev, 2021, 131: 792-805. doi: 10.1016/j.neubiorev.2021.10.009
[47] BUTTURINI E, CARCERERI DE PRATI A, MARIOTTO S. Redox regulation of STAT1 and STAT3 signaling[J]. Int J Mol Sci, 2020, 21(19): 7034. doi: 10.3390/ijms21197034
[48] IKEDA T, NISHITA M, HOSHI K, et al. Mesenchymal stem cell-derived CXCL16 promotes progression of gastric cancer cells by STAT3-mediated expression of Ror1[J]. Cancer Sci, 2020, 111(4): 1254-1265. doi: 10.1111/cas.14339
[49] LI P, HARRIS D, LIU Z M, et al. Stat3 activates the receptor tyrosine kinase like orphan receptor-1 gene in chronic lymphocytic leukemia cells[J]. PLoS One, 2010, 5(7): e11859. doi: 10.1371/journal.pone.0011859
[50] ROZOVSKI U, HARRIS D M, LI P, et al. STAT3-induced Wnt5a provides chronic lymphocytic leukemia cells with survival advantage[J]. J Immunol, 2019, 203(11): 3078-3085. doi: 10.4049/jimmunol.1900389
[51] DANESHMANESH A H, HOJJAT-FARSANGI M, KHAN A S, et al. Monoclonal antibodies against ROR1 induce apoptosis of chronic lymphocytic leukemia (CLL) cells[J]. Leukemia, 2012, 26(6): 1348-1355. doi: 10.1038/leu.2011.362
[52] BAYAT A A, SADEGHI N, FATEMI R, et al. Monoclonal antibody against ROR1 induces apoptosis in human bladder carcinoma cells[J]. Avicenna J Med Biotechnol, 2020, 12(3): 165-171.
[53] LIU D L, KAUFMANN G F, BREITMEYER J B, et al. The anti-ROR1 monoclonal antibody zilovertamab inhibits the proliferation of ovarian and endometrial cancer cells[J]. Pharmaceutics, 2022, 14(4): 837. doi: 10.3390/pharmaceutics14040837
[54] CHOI M Y, WIDHOPF G F 2nd, GHIA E M, et al. Phase Ⅰ trial: cirmtuzumab inhibits ROR1 signaling and stemness signatures in patients with chronic lymphocytic leukemia[J]. Cell Stem Cell, 2018, 22(6): 951-959. e3. doi: 10.1016/j.stem.2018.05.018
[55] AGHEBATI-MALEKI L, YOUNESI V, BARADARAN B, et al. Antiproliferative and apoptotic effects of novel anti-ROR1 single-chain antibodies in hematological malignancies[J]. SLAS Discov, 2017, 22(4): 408-417. doi: 10.1177/2472555216689659
[56] YIN Z N, GAO M Y, CHU S S, et al. Antitumor activity of a newly developed monoclonal antibody against ROR1 in ovarian cancer cells[J]. Oncotarget, 2017, 8(55): 94210-94222. doi: 10.18632/oncotarget.21618
[57] VAISITTI T, ARRUGA F, VITALE N, et al. ROR1 targeting with the antibody-drug conjugate VLS-101 is effective in Richter syndrome patient-derived xenograft mouse models[J]. Blood, 2021, 137(24): 3365-3377. doi: 10.1182/blood.2020008404
-
期刊类型引用(5)
1. 张胜威,许召杰,王东,王华胜,李晓洁,屈海涛. 同源异型盒基因A5、三结构域蛋白14与结直肠癌的关系. 海南医学. 2024(12): 1673-1678 . 百度学术
2. 储伟明,郭爱军,蒋记心,戈杰,薛雨,管玮. 早期口腔鳞状细胞癌浸润深度及侵袭模式在评估其复发及预后中的价值. 实用临床医药杂志. 2024(12): 26-30+41 . 本站查看
3. 沈毅,景莹. 艾愈胶囊联合FOLFOX4化疗对中晚期直肠癌的疗效及其对患者细胞免疫、生存期的影响. 实用临床医药杂志. 2024(23): 58-64 . 本站查看
4. 孙英 ,林洁 ,吉益玎 ,楚志芬 ,卢瑞云 ,王园园 . 凝血功能联合血脂指标检测在结直肠癌诊断中的应用. 分子诊断与治疗杂志. 2022(12): 2198-2201+2206 . 百度学术
5. 卢东方,张新丽,武娟,杨柯. 血清CA50和MIC-1及TK1水平对结直肠癌诊断价值及其与肿瘤恶性程度关系. 社区医学杂志. 2022(23): 1332-1336 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 160
- HTML全文浏览量: 65
- PDF下载量: 31
- 被引次数: 5