Research progress of endoplasmic reticulum stress in sepsis
-
摘要:
脓毒症发病率高,缺乏有效治疗方法,是重症监护室患者死亡的主要原因。内质网是一种细胞器,发挥促进蛋白质折叠和组装等一系列生理活动的作用。在一定条件下,内质网会失去稳态,导致未折叠或错误折叠蛋白的积累,称为内质网应激(ERs)。ERs与脓毒症及由其引起的器官功能障碍有关。本文综述了目前ERs、未折叠蛋白反应(UPR)信号通路与脓毒症相关的研究进展,同时探讨了ERs作为脓毒症治疗靶点的潜在意义及其未来发展方向。
Abstract:Sepsis has high incidence and lack of effective treatment, and it is the leading cause of death in intensive care unit. The endoplasmic reticulum is an organelle, and it is responsible for a series of physiological activities such as protein folding and assembly. Under certain conditions, the endoplasmic reticulum can lose homeostasis, leading to the accumulation of unfolded or misfolded proteins, which is known as endoplasmic reticulum stress (ERs). ERs is associated with sepsis and its related organ dysfunction. This review reviewed the recent advances in ERs, unfolded protein response (UPR) signaling pathways related to sepsis. At the same time, the potential significance of ERs as a therapeutic target for sepsis and its future development direction were discussed.
-
女性良好的初次妊娠结局对未来的分娩至关重要。与剖宫产相比,自然分娩固然对母婴健康更为有利,但生产时间较长、分娩疼痛剧烈,分娩镇痛应运而生,然而分娩镇痛后产程进度缓慢,第一产程明显延长[1]。随着妇产工作者的不断探索,诞生了气囊仿生助产术,其采用非药物性助产,模拟胎儿胎头的作用,扩张阴道及宫颈,促进分娩[2]。江苏省苏北人民医院引进了KCB-Ⅱ全自动仿生助产仪,并观察气囊仿生助产术的临床应用效果,现报告如下。
1. 资料与方法
1.1 一般资料
选取2020年1月—2022年11月在江苏省苏北人民医院分娩的初产妇1 020例。纳入标准: ①单胎头位,初产妇,年龄为20~35岁,孕周为37~41周者; ②分娩的胎儿体质量为2 500~4 000 g者; ③宫颈Bishop评分≥8分者; ④无明显头盆不称、无骨产道及软产道异常者; ⑤无严重内外科合并症及并发症者。
根据是否选用分娩镇痛分为2组: ① A组为分娩镇痛产妇共690例,随机分为观察A组、对照A组,每组345例。观察A组采用气囊仿生助产术,对照A组不使用,以上2组产妇的年龄、孕周等各项指标比较,差异无统计学意义(P>0.05)。②B组为未选用分娩镇痛产妇共330例,随机分为观察B组、对照B组,每组165例。观察B组应用气囊仿生助产术,对照B组不使用, 2组产妇的年龄、孕周等各项指标比较,差异无统计学意义(P>0.05)。
1.2 方法
观察A组、观察B组均在签署知情同意书后,使用KCB-Ⅱ全自动仿生助产仪(淄博科创医疗仪器有限公司)。在宫口开大4.0~5.0 cm, 胎先露部位达到坐骨棘水平下1.0 cm时,协助其取膀胱结石位,导尿,将气囊棒与气囊仿生助产仪连接,将气囊放置于阴道上段,紧贴着胎先露部位,气囊直径以8.0 cm为宜,在6 min内操作完成气囊充气,保持4 min, 扩张阴道上段2次; 对于胎膜未破者,于宫缩间歇期实施人工破膜,采用单扩法,并且加强羊水性状和胎心音、胎方位的监测; 待宫口开大至7.0~8.0 cm后,将气囊置于阴道下段,然后扩张阴道下段1~2次。产程中应保持同步有效宫缩,并加强胎心监护和记录,指导产妇合理屏气用力,如有异常应及时采取措施,必要时急诊行剖宫产术。
对照A组、对照B组除不采用气囊仿生助产术外,其他处理措施均与其对应的观察组相同。
1.3 观察指标
观察并记录产妇的分娩方式(剖宫产、生理助娩术、会阴侧切助娩术)、产程时间(包括第一产程、第二产程、总产程)、产时出血量、产时情况(羊水情况、胎儿窘迫、新生儿窒息)、软产道情况(会阴裂伤、会阴血肿、会阴切口延撕、阴道壁裂伤、阴道血肿、宫颈裂伤)、产褥期感染等。
1.4 统计学分析
采用SPSS 26.0统计学软件处理数据,计量资料采用t或t′检验,以(x±s)表示; 计数资料采用χ2检验,以[n(%)]表示。检验水准α=0.05, P < 0.05为差异有统计学意义。
2. 结果
2.1 分娩方式
观察A组的剖宫产率低于对照A组,生理助娩率高于对照A组,差异有统计学意义(P < 0.05); 2组会阴侧切率相比,差异无统计学意义(P>0.05),见表 1。观察B组的剖宫产率低于对照B组,生理助娩率高于对照B组,差异有统计学意义(P < 0.05); 2组会阴侧切率相比,差异无统计学意义(P>0.05), 见表 2。
表 1 A组分娩镇痛产妇的分娩方式比较[n(%)]组别 n 剖宫产 生理助娩术 会阴侧切助娩术 观察A组 345 6(1.74)* 189(54.78)* 150(43.48) 对照A组 345 20(5.80) 154(44.64) 171(49.57) 与对照A组比较, * P < 0.05。 表 2 B组未选用分娩镇痛产妇的分娩方式比较[n(%)]组别 n 剖宫产 生理助娩术 会阴侧切助娩术 观察B组 165 5(3.03)* 108(65.45)* 52(31.52) 对照B组 165 21(12.73) 90(54.55) 56(33.94) 与对照B组比较, *P < 0.05。 2.2 产程时间
观察A组第一产程、第二产程时间及总产程时间短于对照A组,差异有统计学意义(P < 0.05), 见表 3。观察B组的第一产程、第二产程时间及总产程时间短于对照B组,差异有统计学意义(P < 0.05), 见表 4。
表 3 A组分娩镇痛产妇的产程时间比较(x±s)min 组别 n 总产程 第一产程 第二产程 观察A组 339 492.32±203.12* 446.19±202.11* 34.73±20.71* 对照A组 325 620.61±188.25 570.59±184.73 38.32±24.02 与对照A组比较, * P < 0.05。 表 4 B组未选用分娩镇痛产妇的产程时间比较(x±s)min 组别 n 总产程 第一产程 第二产程 观察B组 160 318.74±162.09* 273.13±148.19* 33.84±25.99* 对照B组 144 474.47±186.70 425.60±185.76 40.96±29.97 与对照B组比较, * P < 0.05。 2.3 产时出血量
观察A组的产时出血量与对照A组比较,差异无统计学意义(P>0.05),见表 5。观察B组的产时出血量与对照B组比较,差异无统计学意义(P>0.05), 见表 6。
表 5 A组分娩镇痛产妇的产时出血量比较(x±s)mL 组别 n 阴道分娩产时出血量 剖宫产产时出血量 观察A组 345 341.89±160.42 313.33±194.59 对照A组 345 322.52±136.54 272.50±120.83 表 6 B组未选用分娩镇痛产妇的产时出血量比较(x±s)mL 组别 n 阴道分娩产时出血量 剖宫产产时出血量 观察组 165 335.56±176.52 360.00±219.09 对照组 165 325.21±152.83 269.05±143.59 2.4 产时情况
2.4.1 羊水情况
观察A组的羊水Ⅰ度者10例,Ⅱ度者8例, Ⅲ度者2例; 对照A组羊水Ⅰ度者13例, Ⅱ度者15例, Ⅲ度者3例, 2组比较差异无统计学意义(P>0.05), 见表 7。观察B组的羊水Ⅰ度者6例,Ⅱ度者6例, Ⅲ度者2例; 对照B组羊水Ⅰ度者10例,Ⅱ度者9例, Ⅲ度者2例, 2组比较差异无统计学意义(P>0.05), 见表 8。
表 7 A组分娩镇痛产妇的产时情况比较[n(%)]组别 n 羊水污染 胎儿宫内窘迫 新生儿窒息 观察A组 345 20(5.80) 3(0.87) 1(0.29) 对照A组 345 31(8.99) 9(2.61) 0 表 8 B组未选用分娩镇痛产妇的产时情况比较[n(%)]组别 n 羊水污染 胎儿宫内窘迫 新生儿窒息 观察B组 165 14(8.48) 4(2.42) 0 对照B组 165 21(12.73) 11(6.67) 3(1.82) 2.4.2 胎儿情况
观察A组的胎儿宫内窘迫情况与对照A组比较,差异无统计学意义(P>0.05), 见表 7。观察B组的胎儿宫内窘迫情况与对照B组比较,差异无统计学意义(P>0.05), 见表 8。
2.4.3 新生儿情况
观察A组的1 min Apgar评分0~3分(重度窒息)者0例, 4~7分(轻度窒息)者1例, 8~10分(正常)者344例; 对照A组1 min Apgar评分0~3分者0例, 4~7分者0例, 8~10分者345例, 2组新生儿窒息率比较,差异无统计学意义(P>0.05), 见表 7。观察B组的1 min Apgar评分0~3分者0例, 4~7分者0例, 8~10分者165例; 对照B组1 min Apgar评分0~3分者0例, 4~7分者3例, 8~10分者342例,2组新生儿窒息率比较,差异无统计学意义(P>0.05), 见表 8。各组均无新生儿死亡。
2.5 妊娠结局
观察A组的会阴损伤(裂伤、血肿、切口延撕)少于对照A组,差异有统计学意义(P < 0.05); 2组阴道损伤(血肿、裂伤)及宫颈裂伤比较,差异无统计学意义(P>0.05), 见表 9。观察B组的会阴损伤(裂伤、血肿、切口延撕)少于对照组,差异有统计学意义(P < 0.05); 2组阴道损伤(血肿、裂伤)及宫颈裂伤比较,差异无统计学意义(P>0.05), 见表 10。
表 9 A组分娩镇痛产妇的软产道情况比较[n(%)]组别 n 会阴损伤(裂伤、血肿、切口延撕) 阴道损伤(血肿、裂伤) 宫颈裂伤 观察A组 345 191(55.36)* 11(3.19) 3(0.87) 对照A组 345 217(62.90) 11(3.19) 7(2.03) 与对照A组比较, * P < 0.05。 表 10 B组未选用分娩镇痛产妇的软产道情况比较[n(%)]组别 n 会阴损伤(裂伤、血肿、切口延撕) 阴道损伤(血肿、裂伤) 宫颈裂伤 观察B组 165 80(48.48)* 4(2.42) 2(1.21) 对照B组 165 98(59.39) 6(3.64) 1(0.61) 与对照B组比较, * P < 0.05。 观察A组的尿潴留和尿失禁发生率低于对照A组(1.4%、5.0%), 观察B组的尿潴留和尿失禁发生率低于对照B组(1.4%、5.0%), 差异有统计学意义(P < 0.05)。各组产妇均未发生产褥期感染。
3. 讨论
气囊仿生助产的作用机制[2]: ①对宫颈进行机械性刺激,进而促进宫颈扩张及成熟; ②通过子宫-阴道反射引起内源性缩宫素及前列腺素的合成与释放,使宫颈软化、缩短及扩张,从而加强宫缩以缩短产程[3]; ③气囊扩张后施行的人工破膜使得先露部下降直接压迫子宫下段、宫颈及阴道上段,进一步引起反射性子宫收缩; ④人工破膜后,血清及羊水中Ca2+和前列腺素浓度增加,促进Ca2+内流,子宫平滑肌细胞内Ca2+浓度随之增加促使子宫平滑肌收缩; ⑤在机械性扩张阴道的同时也压迫直肠前壁,引起产妇非随意地向下屏气,从而迫使胎先露下降。
本研究发现,使用气囊仿生助产的孕产妇会阴损伤(裂伤、血肿、切口延撕)较未使用者明显减少,说明此法对于会阴保护有积极效果。但有研究[4]表明,由于气囊仿生助产加速宫颈扩张,加强宫缩缩短产程,在某些情况下会导致孕妇产程中出现宫颈裂伤、阴道裂伤、出血等。本研究宫颈裂伤及阴道损伤的病例数较少,因此需进一步扩大研究。在临床工作中,做好术前评估,把握运用气囊仿生助产术的最佳时机十分重要。
近年来,随着中国经济发展以及分娩镇痛技术的成熟,越来越多的孕妇选择无痛分娩,减少了其临产的恐惧,并极大地缓解疼痛,给准妈妈们带来了福音[5]。相关研究[6]也表明,分娩镇痛可明显降低自然分娩初产妇的疼痛程度和应激水平,但其在第一产程对子宫收缩具有暂时性抑制作用,会导致第一产程和第二产程时间延长。对于产妇来说,产程停滞,尤其是第二产程延长,会导致产后出血、产褥感染、新生儿窒息等母婴并发症[7-8]。而气囊仿生助产术恰好弥补了这一不足,显著缩短了产程[9], 减少了由宫缩乏力所致的产后出血; 并且严格的无菌操作以及减少内诊次数,降低了产褥感染率[10]。因此无痛分娩联合气囊仿生助产将是极佳的分娩方式[11]。
气囊仿生助产联合分娩镇痛可降低产后尿失禁等并发症的发生率,改善产妇的盆底功能[12]。盆底功能一直是产后康复研究的重点,不同的分娩方式会对女性盆底肌肉、纤维、神经等造成不同程度的损伤,进而在产后及老年期导致盆底肌肌力下降、压力性尿失禁、盆腔脏器脱垂和大便失禁等盆底功能障碍性疾病,严重影响女性生活质量[13]。究其原因为:分娩过程中,当胎头遇到盆底肌阻力,随着胎先露下降,胎头对盆底肌和神经产生机械压迫和扩张,此时肛提肌作为产道的一部分,将受到极大的压迫及膨胀牵拉[14]。而气囊仿生助产模拟胎头下降,给予少量而多次的刺激,充分适应分娩期变化,能降低对盆底肌的损伤,从而降低孕产妇对其产后恢复的担忧,提高了产后生活质量,而且对其未来的分娩极为重要。除此之外,气囊仿生助产对降低臀位剖宫产率具有积极意义,因为气囊扩张替代了传统的胎先露对产道进行缓慢扩张,使得胎儿能够安稳顺利地通过产道,从而实现臀位助产[15]。
-
[1] SINGER M, DEUTSCHMAN C S, SEYMOUR C W, et al. The third international consensus definitions for Sepsis and septic shock (Sepsis-3)[J]. JAMA, 2016, 315(8): 801-810. doi: 10.1001/jama.2016.0287
[2] DEMERLE K M, ANGUS D C, BAILLIE J K, et al. Sepsis subclasses: a framework for development and interpretation[J]. Crit Care Med, 2021, 49(5): 748-759. doi: 10.1097/CCM.0000000000004842
[3] REINHART K, DANIELS R, KISSOON N, et al. Recognizing Sepsis as a global health priority-A WHO resolution[J]. N Engl J Med, 2017, 377(5): 414-417. doi: 10.1056/NEJMp1707170
[4] GOURD N M, NIKITAS N. Multiple organ dysfunction syndrome[J]. J Intensive Care Med, 2020, 35(12): 1564-1575. doi: 10.1177/0885066619871452
[5] KHAN M M, YANG W L, WANG P. Endoplasmic reticulum stress in sepsis[J]. Shock, 2015, 44(4): 294-304. doi: 10.1097/SHK.0000000000000425
[6] GUPTA S, DEEPTI A, DEEGAN S, et al. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1alpha-XBP1 signaling through a physical interaction[J]. PLoS Biol, 2010, 8(7): e1000410. doi: 10.1371/journal.pbio.1000410
[7] CHENG X, LIU H, JIANG C C, et al. Connecting endoplasmic reticulum stress to autophagy through IRE1/JNK/beclin-1 in breast cancer cells[J]. Int J Mol Med, 2014, 34(3): 772-781. doi: 10.3892/ijmm.2014.1822
[8] CALFON M, ZENG H Q, URANO F, et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA[J]. Nature, 2002, 415(6867): 92-96. doi: 10.1038/415092a
[9] URANO F, WANG X Z, BERTOLOTTI A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1[J]. Science, 2000, 287(5453): 664-666. doi: 10.1126/science.287.5453.664
[10] HETZ C, CHEVET E, HARDING H P. Targeting the unfolded protein response in disease[J]. Nat Rev Drug Discov, 2013, 12(9): 703-719. doi: 10.1038/nrd3976
[11] MA Y J, HENDERSHOT L M. Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress[J]. J Biol Chem, 2003, 278(37): 34864-34873. doi: 10.1074/jbc.M301107200
[12] WU J, RUTKOWSKI D T, DUBOIS M, et al. ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress[J]. Dev Cell, 2007, 13(3): 351-364. doi: 10.1016/j.devcel.2007.07.005
[13] SANO R, REED J C. ER stress-induced cell death mechanisms[J]. Biochim Biophys Acta, 2013, 1833(12): 3460-3470. doi: 10.1016/j.bbamcr.2013.06.028
[14] OYADOMARI S, MORI M. Roles of CHOP/GADD153 in endoplasmic reticulum stress[J]. Cell Death Differ, 2004, 11(4): 381-389. doi: 10.1038/sj.cdd.4401373
[15] NAKAGAWA T, ZHU H, MORISHIMA N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-Β[J]. Nature, 2000, 403(6765): 98-103. doi: 10.1038/47513
[16] MARTINON F, CHEN X, LEE A H, et al. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages[J]. Nat Immunol, 2010, 11(5): 411-418. doi: 10.1038/ni.1857
[17] WOO C W, KUTZLER L, KIMBALL S R, et al. Toll-like receptor activation suppresses ER stress factor CHOP and translation inhibition through activation of eIF2B[J]. Nat Cell Biol, 2012, 14(2): 192-200. doi: 10.1038/ncb2408
[18] KASER A, LEE A H, FRANKE A, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease[J]. Cell, 2008, 134(5): 743-756. doi: 10.1016/j.cell.2008.07.021
[19] SHKODA A, RUIZ P A, DANIEL H, et al. Interleukin-10 blocked endoplasmic reticulum stress in intestinal epithelial cells: impact on chronic inflammation[J]. Gastroenterology, 2007, 132(1): 190-207. doi: 10.1053/j.gastro.2006.10.030
[20] ZHANG K Z, KAUFMAN R J. From endoplasmic-reticulum stress to the inflammatory response[J]. Nature, 2008, 454(7203): 455-462. doi: 10.1038/nature07203
[21] JOFFRE J, HELLMAN J. Oxidative stress and endothelial dysfunction in Sepsis and acute inflammation[J]. Antioxid Redox Signal, 2021, 35(15): 1291-1307. doi: 10.1089/ars.2021.0027
[22] LIN Y N, JIANG M, CHEN W J, et al. Cancer and ER stress: mutual crosstalk between autophagy, oxidative stress and inflammatory response[J]. Biomedecine Pharmacother, 2019, 118: 109249. doi: 10.1016/j.biopha.2019.109249
[23] 张雨欣, 周小杰, 于浩然, 等. 内质网应激与氧化应激[J]. 农业生物技术学报, 2022, 30(10): 2009-2024. https://www.cnki.com.cn/Article/CJFDTOTAL-NYSB202210015.htm [24] HIRAMATSU N, KASAI A, HAYAKAWA K, et al. Real-time detection and continuous monitoring of ER stress in vitro and in vivo by ES-TRAP: evidence for systemic, transient ER stress during endotoxemia[J]. Nucleic Acids Res, 2006, 34(13): e93. doi: 10.1093/nar/gkl515
[25] SCHILDBERG F A, SCHULZ S, DOMBROWSKI F, et al. Cyclic AMP alleviates endoplasmic stress and programmed cell death induced by lipopolysaccharides in human endothelial cells[J]. Cell Tissue Res, 2005, 320(1): 91-98. doi: 10.1007/s00441-004-1066-4
[26] KOZLOV A V, DUVIGNEAU J C, MILLER I, et al. Endotoxin causes functional endoplasmic reticulum failure, possibly mediated by mitochondria[J]. Biochim Biophys Acta, 2009, 1792(6): 521-530. doi: 10.1016/j.bbadis.2009.03.004
[27] FERLITO M, WANG Q H, FULTON W B, et al. Hydrogen sulfide[corrected]increases survival during sepsis: protective effect of CHOP inhibition[J]. J Immunol, 2014, 192(4): 1806-1814. doi: 10.4049/jimmunol.1300835
[28] ENDO M, OYADOMARI S, SUGA M, et al. The ER stress pathway involving CHOP is activated in the lungs of LPS-treated mice[J]. J Biochem, 2005, 138(4): 501-507. doi: 10.1093/jb/mvi143
[29] KIM H J, JEONG J S, KIM S R, et al. Inhibition of endoplasmic reticulum stress alleviates lipopolysaccharide-induced lung inflammation through modulation of NF-κB/HIF-1α signaling pathway[J]. Sci Rep, 2013, 3: 1142. doi: 10.1038/srep01142
[30] 何飞, 蔡楠, 王军, 等. 内质网应激在急性呼吸窘迫综合征中的相关研究进展[J]. 中华危重病急救医学, 2019, 31(12): 1552-1554. doi: 10.3760/cma.j.issn.2095-4352.2019.12.026 [31] LIU W S, LIU K Z, ZHANG S, et al. Tetramethylpyrazine showed therapeutic effects on Sepsis-induced acute lung injury in rats by inhibiting endoplasmic reticulum stress protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling-induced apoptosis of pulmonary microvascular endothelial cells[J]. Med Sci Monit, 2018, 24: 1225-1231. doi: 10.12659/MSM.908616
[32] KHAN M M, YANG W L, BRENNER M, et al. Cold-inducible RNA-binding protein (CIRP) causes sepsis-associated acute lung injury via induction of endoplasmic reticulum stress[J]. Sci Rep, 2017, 7: 41363. doi: 10.1038/srep41363
[33] MIYAZAKI Y, KAIKITA K, ENDO M, et al. C/EBP homologous protein deficiency attenuates myocardial reperfusion injury by inhibiting myocardial apoptosis and inflammation[J]. Arterioscler Thromb Vasc Biol, 2011, 31(5): 1124-1132. doi: 10.1161/ATVBAHA.111.224519
[34] GROOTJANS J, HODIN C M, DE HAAN J J, et al. Level of activation of the unfolded protein response correlates with Paneth cell apoptosis in human small intestine exposed to ischemia/reperfusion[J]. Gastroenterology, 2011, 140(2): 529-539, e3. doi: 10.1053/j.gastro.2010.10.040
[35] AYALA P, MONTENEGRO J, VIVAR R, et al. Attenuation of endoplasmic reticulum stress using the chemical chaperone 4-phenylbutyric acid prevents cardiac fibrosis induced by isoproterenol[J]. Exp Mol Pathol, 2012, 92(1): 97-104. doi: 10.1016/j.yexmp.2011.10.012
[36] ZHAO H, LIAO Y L, MINAMINO T, et al. Inhibition of cardiac remodeling by pravastatin is associated with amelioration of endoplasmic reticulum stress[J]. Hypertens Res, 2008, 31(10): 1977-1987. doi: 10.1291/hypres.31.1977
[37] NI L, ZHOU C Q, DUAN Q L, et al. β-AR blockers suppresses ER stress in cardiac hypertrophy and heart failure[J]. PLoS One, 2011, 6(11): e27294. doi: 10.1371/journal.pone.0027294
[38] FAN Y, XIAO W Z, LEE K, et al. Inhibition of reticulon-1A-mediated endoplasmic reticulum stress in early AKI attenuates renal fibrosis development[J]. J Am Soc Nephrol, 2017, 28(7): 2007-2021. doi: 10.1681/ASN.2016091001
[39] WU Y, YAO Y M, KE H L, et al. Mdivi-1 protects CD4+ T cells against apoptosis via balancing mitochondrial fusion-fission and preventing the induction of endoplasmic reticulum stress in Sepsis[J]. Mediators Inflamm, 2019, 2019: 7329131.
[40] ROSEN D A, SEKI S M, FERNÁNDEZ-CASTAÑEDA A, et al. Modulation of the sigma-1 receptor-IRE1 pathway is beneficial in preclinical models of inflammation and sepsis[J]. Sci Transl Med, 2019, 11(478): eaau5266. doi: 10.1126/scitranslmed.aau5266
[41] CHEN X Z, WANG Y L, XIE X, et al. Heme oxygenase-1 reduces Sepsis-induced endoplasmic reticulum stress and acute lung injury[J]. Mediators Inflamm, 2018, 2018: 9413876.
[42] HOU Y, WANG X F, LANG Z Q, et al. Adiponectin is protective against endoplasmic reticulum stress-induced apoptosis of endothelial cells in sepsis[J]. Revista Brasileira De Pesquisas Med E Biol, 2018, 51(12): e7747.
[43] HONG Y P, DENG W H, GUO W Y, et al. Inhibition of endoplasmic reticulum stress by 4-phenylbutyric acid prevents vital organ injury in rat acute pancreatitis[J]. Am J Physiol Gastrointest Liver Physiol, 2018, 315(5): G838-G847. doi: 10.1152/ajpgi.00102.2018
[44] MARCINIAK S J, CHAMBERS J E, RON D. Pharmacological targeting of endoplasmic reticulum stress in disease[J]. Nat Rev Drug Discov, 2022, 21(2): 115-140. doi: 10.1038/s41573-021-00320-3
[45] NAKAYAMA Y, ENDO M, TSUKANO H, et al. Molecular mechanisms of the LPS-induced non-apoptotic ER stress-CHOP pathway[J]. J Biochem, 2010, 147(4): 471-483. doi: 10.1093/jb/mvp189
-
期刊类型引用(2)
1. 敖安平. 气囊仿生助产在初产妇自然分娩中的应用效果. 中国民康医学. 2024(11): 61-63 . 百度学术
2. 乐永青,徐婷,张开,吴花梅,王胜华. 探讨宫颈球囊放置后联合人工破膜对晚期妊娠产妇分娩产程的影响. 中国医药指南. 2024(31): 8-11 . 百度学术
其他类型引用(0)