多模式成像在中心性浆液性脉络膜视网膜病变中的预后生物学标志

张琛, 杨桢, 赵易, 杨小丽

张琛, 杨桢, 赵易, 杨小丽. 多模式成像在中心性浆液性脉络膜视网膜病变中的预后生物学标志[J]. 实用临床医药杂志, 2023, 27(4): 133-137, 143. DOI: 10.7619/jcmp.20223176
引用本文: 张琛, 杨桢, 赵易, 杨小丽. 多模式成像在中心性浆液性脉络膜视网膜病变中的预后生物学标志[J]. 实用临床医药杂志, 2023, 27(4): 133-137, 143. DOI: 10.7619/jcmp.20223176
ZHANG Chen, YANG Zhen, ZHAO Yi, YANG Xiaoli. Prognostic biomarkers of multimodal imaging in central serous chorioretinopathy[J]. Journal of Clinical Medicine in Practice, 2023, 27(4): 133-137, 143. DOI: 10.7619/jcmp.20223176
Citation: ZHANG Chen, YANG Zhen, ZHAO Yi, YANG Xiaoli. Prognostic biomarkers of multimodal imaging in central serous chorioretinopathy[J]. Journal of Clinical Medicine in Practice, 2023, 27(4): 133-137, 143. DOI: 10.7619/jcmp.20223176

多模式成像在中心性浆液性脉络膜视网膜病变中的预后生物学标志

基金项目: 

四川省南充市科学技术局2019年市校合作科研专项资金立项项目 19SXHZ0075

详细信息
    通讯作者:

    杨小丽, E-mail: yangxiaolioculist@163.com

  • 中图分类号: R773.4;R816.1

Prognostic biomarkers of multimodal imaging in central serous chorioretinopathy

  • 摘要:

    中心性浆液性脉络膜视网膜病变(CSC)是一种主要影响青中年男性视力的常见疾病, 以黄斑区浆液性视网膜脱离为特征。虽然大部分CSC可以自发消退,但复发率较高,容易转变为慢性形式,导致视网膜色素上皮层和感光细胞的永久性损伤,从而引发不可逆的长期视力障碍,严重影响患者生活质量。由于CSC的病因不明以及临床特征多样性,目前尚无统一的分类及治疗方法。眼底自发荧光、荧光素血管造影、吲哚菁绿血管造影、光学相干断层扫描、光学相干断层扫描造影在内的多模式成像技术能够系统地描述CSC的预后,若联合机器学习技术可以提高临床效率。本文旨在将采用多模式成像对CSC的预后生物学标志物进行全面归纳和总结,更系统地评估患者预后和治疗反应,以便更好地指导临床选择治疗方案。

    Abstract:

    Central serous chorioretinopathy(CSC) is a common disease that mainly affects central vision in young and middle-aged man, characterized by macular serous detachment. Although most of them can spontaneously subside, they have a high recurrence rate and are easy to evolve into chronic forms, resulting in permanent damage to the pigment cortex and photoreceptor cells of the retina, leading to irreversible long-term visual impairment and seriously affecting the quality of life of patients. Due to the unknown etiology of CSC and the diversity of clinical features, there is no unified classification and treatment method. Multimodal imaging techniques including fundus autofluorescence, fluorescein angiography, indocyanine green angiography, optical coherence tomography, and optical coherence tomography angiography have more systematically described the prognosis of CSC, their combination with machine learning technology can improve clinical efficiency. The purpose of this study was to comprehensively summarize prognostic biomarkers of CSC by using multi-mode imaging, so as to evaluate patients' prognosis and treatment response more systematically, thereby better guiding clinical treatment selection.

  • 肾脏恶性肿瘤以肾细胞癌(RCC)为主,俗称肾癌,占75%~90%[1-2], 此外还有肾盂癌、肾母细胞瘤以及罕见的淋巴瘤等。RCC患者临床症状缺乏特异性,部分患者可无不适症状,故较多RCC患者是在体检或接受其他检查时确诊。小肾癌或超小肾癌是基于不同体积肾癌诊治特点而提出的概念,其中小肾癌的划分标准有2种(肿瘤直径≤3 cm或≤4 cm)[3-4], 目前直径≤4 cm是主要划分标准。超小肾癌(usRCC)是近年来小肾肿瘤领域的研究热点,且随着居民体检意识的增强和医学技术的发展,越来越多的包含usRCC在内的小肾肿瘤被发现。相关研究[5-6]指出,临床人员对于直径≤2 cm的小肾肿瘤需重视早期筛选与识别,其虽然以乏脂肪血管平滑肌脂肪瘤(mfAML)此类良性肿瘤居多,但仍有部分为恶性肿瘤,且两者的鉴别诊断更为棘手,已成为目前RCC诊疗研究中亟待解决的难题。本研究对71例富血供超小肾肿瘤患者的临床资料进行回顾性分析,基于usRCC与mfAML的CT影像组学资料构建简易预测模型,并分析此预测模型对两者的鉴别诊断价值,现报告如下。

    本研究为单中心回顾性队列研究,收集2018年3月—2022年12月在秦皇岛市第四医院接受手术治疗且术后病理证实为富血供超小肾肿瘤的71例患者的临床资料,并依据术后病理类型将患者分为usRCC组33例和mfAML组38例。usRCC组中仅3例表现为富血供强化的肾嫌色细胞癌(chRCC), 其余30例均为常见的透明细胞肾细胞癌(ccRCC)。mfAML组38例患者在肾脏CT平扫时未能检测到明显的脂肪密度,且术后病理检查仅发现少量脂肪成分。纳入标准: ①有明确术后病理检查结果(诊断结果为usRCC或mfAML)者; ②肿瘤最大直径≤2 cm者; ③术前接受肾脏CT平扫和双期增强扫描者。排除标准: ①合并VHL综合征者; ②临床病理资料和(或)CT影像学资料缺失者。本研究经秦皇岛市第四医院医学伦理委员会审核批准。

    使用美国GE64排螺旋CT进行肾脏常规平扫和CT增强扫描,嘱患者取仰卧位,头先进,扫描范围为肝脏上缘至髂骨翼上缘。基本参数设置为管电压120 kV, 管电流采用自动控制技术,层厚、层间距均为5 mm, 重建层厚1 mm。肾脏平扫后进行双期增强扫描,采用双筒高压注射器经肘静脉注射非离子型对比剂碘佛醇(江苏恒瑞医药,国药准字H20067895), 注射剂量1.0 mL/kg, 注射速率3.0 mL/s。为避免过敏反应,可在注射碘佛醇5 min前静脉注射10 mg地塞米松。分别于注射碘佛醇后25~30 s、65~75 s扫描并获取皮质期和实质期的增强扫描图像。

    将所得CT图像传送至后台工作站,在增强图像上确定肿瘤实性部分且强化最明显的区域,然后在该区域的中心位置选择感兴趣区(ROI), ROI可呈圆形或类圆形,面积为0.1~0.2 cm2。选择ROI应尽量避开坏死、钙化和血管影等区域,平扫和双期增强扫描测量的ROI大小、位置和形状应尽量保持一致。本研究由2名对研究和病理资料不知情的资深CT医师共同阅片讨论后得出一致结论。观察内容主要包括肿瘤位置(左肾/右肾)、肿瘤形状(圆形/椭圆/不规则形)、肿瘤中心点(肾内/肾外)、有无囊变坏死、有无“冰淇淋蛋筒征”、有无假包膜征、皮质期强化均匀性(均匀/不均匀)、实质期强化均匀性(均匀/不均匀)和强化特征(快进快出/持续强化),同时测量双期(皮质期、实质期)的CT值、净强化CT值,净强化CT值=肿瘤皮质期或实质期CT值-肿瘤平扫CT值。

    将患者的一般资料和CT影像学资料用Excel表格归类整理,导入SPSS 21.0软件进行统计学分析。计数资料用[n(%)]表示,组间比较采用χ2检验。正态分布的计量资料用(x±s)表示,组间比较采用成组t检验。采用二元Logistic回归分析法筛选对usRCC与mfAML具有鉴别诊断意义的独立影响因素,然后建立基于CT影像组学的简易预测模型并生成预测概率。绘制受试者工作特征(ROC)曲线,计算曲线下面积(AUC),评估相关CT定量参数和预测模型对usRCC与mfAML的鉴别诊断价值。不同指标的AUC比较采用秩和检验。AUC范围为0.5~1.0, 越接近1.0表示诊断效能越高, AUC>0.7~0.8提示具有一定的诊断效能, AUC>0.8提示具有较好的诊断效能。P < 0.05表示差异有统计学意义。

    usRCC组在性别、年龄、肿瘤位置、肿瘤形状、肿瘤中心点、“冰淇淋蛋筒征”、皮质期强化均匀性和强化特征方面与mfAML组比较,差异均无统计学意义(P>0.05)。usRCC组囊变坏死、假包膜征、实质期不均匀强化者占比均高于mfAML组,差异有统计学意义(P < 0.05)。见表 1

    表  1  2组患者临床资料和CT影像学表现比较(x±s)[n(%)]
    指标 分类 usRCC组(n=33) mfAML组(n=38) χ2/t P
    性别 20(60.61) 17(44.74) 1.782 0.182
    13(39.39) 21(55.26)
    年龄/岁 53.40±9.07 50.37±8.15 1.483 0.143
    肿瘤位置 左肾 19(57.58) 18(47.37) 0.737 0.390
    右肾 14(42.42) 20(52.63)
    肿瘤形状 圆形 11(33.33) 13(34.21) 0.072 0.965
    椭圆 14(42.42) 15(39.47)
    不规则形 8(24.24) 10(26.32)
    肿瘤中心点 肾内 18(54.55) 19(50.00) 0.146 0.702
    肾外 15(45.45) 19(50.00)
    囊变坏死 17(51.52) 9(23.68) 5.894 0.015
    16(48.48) 29(76.32)
    “冰淇淋蛋筒征” 9(27.27) 8(21.05) 0.375 0.540
    24(72.73) 30(78.95)
    假包膜征 7(21.21) 1(2.63) 4.382 0.036
    26(78.79) 37(97.37)
    皮质期强化均匀性 不均匀 30(90.91) 36(94.74) 0.027 0.870
    均匀 3(9.09) 2(5.26)
    实质期强化均匀性 不均匀 24(72.73) 14(36.84) 9.143 0.002
    均匀 9(27.27) 24(63.16)
    强化特征 快进快出 33(100.00) 36(94.74) 0.382 0.537
    持续强化 0 2(5.26)
    下载: 导出CSV 
    | 显示表格

    典型病例见图 1图 2图 1为1例usRCC患者(年龄57岁)增强CT扫描图像,左肾类圆形不均匀软组织密度结节,局部突出于肾脏轮廓,增强扫描在实质期明显不均匀强化。图 2为1例mfAML患者(年龄52岁)增强CT扫描图像,左肾混杂密度结节,略突向肾外,内见少许脂肪密度灶和软组织密度区,增强扫描在实质期软组织密度区均匀强化。

    图  1  usRCC患者增强扫描实质期不均匀强化
    图  2  mfAML患者增强扫描实质期均匀强化

    2组实质期CT值比较,差异无统计学意义(P>0.05); usRCC组皮质期CT值、皮质期净强化CT值和实质期净强化CT值均高于mfAML组,差异有统计学意义(P < 0.05)。见表 2

    表  2  usRCC组和mfAML组相关CT定量参数比较(x±sHu
    组别 n 皮质期CT值 实质期CT值 皮质期净强化CT值 实质期净强化CT值
    mfAML组 38 191.95±37.58 115.92±26.15 154.07±34.90 66.75±17.85
    usRCC组 33 224.06±42.57* 127.35±30.12 187.43±40.26* 97.62±24.58*
    与mfAML组比较, * P < 0.05。
    下载: 导出CSV 
    | 显示表格

    将病理类型作为状态变量(usRCC=1, mfAML=0), 选择表 2中差异有统计学意义(P < 0.05)的3个CT定量参数分别绘制ROC曲线。ROC曲线显示,皮质期CT值、皮质期净强化CT值、实质期净强化CT值鉴别诊断usRCC与mfAML的AUC分别为0.702、0.718、0.803(均>0.7), 但仅有实质期净强化CT值的AUC>0.8, 见表 3图 3。实质期净强化CT值的AUC大于皮质期CT值的AUC, 差异有统计学意义(Z=2.763, P=0.039), 实质期净强化CT值、皮质期净强化CT值的AUC差异无统计学意义(Z=1.318, P=0.158), 皮质期CT值、皮质期净强化CT值的AUC差异无统计学意义(Z=0.903, P=0.412), 提示实质期净强化CT值的诊断效能最佳。

    表  3  相关CT定量参数对usRCC与mfAML的鉴别诊断效能
    CT定量参数 AUC 临界值/Hu 标准误 P 95% CI
    皮质期CT值 0.702 212.73 0.068 0.007 0.569~0.835
    皮质期净强化CT值 0.718 165.40 0.065 0.004 0.590~0.846
    实质期净强化CT值 0.803 76.48 0.058 <0.001 0.690~0.916
    下载: 导出CSV 
    | 显示表格
    图  3  3种CT定量参数鉴别诊断usRCC与mfAML的ROC曲线

    根据单因素分析结果,进一步采用二元Logistic回归模型筛选对usRCC与mfAML具有鉴别意义的独立影响因素,将病理类型(usRCC或mfAML)作为因变量,将囊变坏死(有=1, 无=0)、假包膜征(有=1, 无=0)、实质期强化均匀性(不均匀=1, 均匀=0)和CT定量参数中AUC最大的实质期净强化CT值(连续性变量)作为自变量。多因素分析结果显示,囊变坏死、实质期强化均匀性、实质期净强化CT值均是对usRCC与mfAML具有鉴别意义的独立影响因素(P < 0.05), 见表 4

    表  4  二元Logistic回归分析筛选对usRCC与mfAML具有鉴别意义的独立影响因素
    自变量 β Wald χ2 P OR 95% CI
    囊变坏死 0.928 4.723 0.028 2.537 1.125~4.358
    假包膜征 0.830 3.521 0.175 1.806 0.831~3.027
    实质期强化均匀性 1.327 6.580 0.013 3.872 1.327~7.259
    实质期净强化CT值 1.462 7.028 0.010 3.593 1.290~7.518
    下载: 导出CSV 
    | 显示表格

    基于多因素分析筛选出的对usRCC与mfAML具有鉴别诊断意义的3个CT影像组学变量(囊变坏死、实质期强化均匀性、实质期净强化CT值)构建简易组合预测模型,并借助二元Logistic回归分析生成预测概率,绘制ROC曲线,评估简易预测模型鉴别诊断usRCC与mfAML的效能(状态变量: usRCC=1, mfAML=0)。ROC曲线显示,简易预测模型的AUC为0.890(95% CI: 0.804~0.976), 标准误为0.044, P < 0.001, 鉴别诊断的敏感度为87.88%, 特异度为76.32%, 准确度为81.69%, 约登指数为0.642, 见图 4

    图  4  简易预测模型鉴别诊断usRCC与mfAML的ROC曲线

    经典的RCC三联征在临床中并不多见,在直径≤4 cm的小肾肿瘤和直径≤2 cm的超小肾肿瘤的风险筛查与诊断中作用有限。对体积较小、临床症状不典型且影像学表现相似的肾肿瘤进行良恶性鉴别诊断,不仅直接影响临床诊疗策略的合理性和科学性,也是临床人员和患者尤为关注的难题[7]。CT是目前诊断小肾癌比较准确的影像学手段,能显示直径>0.5 cm甚至更小的肿瘤, CT平扫为均匀低或等密度,且多位于肾轮廓外围,假包膜征比重较高,增强扫描也可见“快进快出”的典型征象[8]。既往研究多是对直径≤4 cm的小肾肿瘤的CT影像学鉴别研究,针对直径≤2 cm的超小肾肿瘤的鉴别研究则较缺乏。然而,临床中超小肾肿瘤的误诊风险更高,需重点进行鉴别诊断。血管平滑肌脂肪瘤(AML)作为临床常见的良性肾肿瘤之一,多发于中青年女性,临床常无明显症状,肿瘤较大者可出现血尿、腰酸和腹部不适等症状,严重者可自发破裂出血[9]。AML由不同成分比例的畸形血管、平滑肌细胞和成熟脂肪细胞组成,其中富血供mfAML因肿瘤组织内脂肪成分比例偏少,加之肿瘤体积偏小时的部分容积效应,在影像学表现上与RCC存在诸多相似之处,增加了鉴别诊断难度[10-11]。不同病理类型的诊疗策略和术式选择存在较大区别,本研究旨在通过CT影像学手段探寻鉴别诊断usRCC与mfAML的可靠方法。

    本研究结果显示, usRCC组与mfAML组在性别、年龄和多项CT影像学表现方面并无显著差异(P>0.05), 与相关研究[12]结论基本相符。虽然mfAML多见于中青年女性, usRCC多见于中老年男性,但本研究由于收集的此类小肾肿瘤样本量偏少,并未发现性别构成和年龄分布的明显差异。“冰淇淋蛋筒征”是多见于良性肿瘤的CT征象,其形成原理主要与肿瘤生长方式和肿瘤质地有关。mfAML肿瘤组织质地较软,无浸润生长的恶性特点,生长部位主要为阻力较小的被膜、肾小叶间等处,导致肿瘤与邻近肾脏交界处显示比较清楚和平直, CT影像上表现为“冰淇淋蛋筒征”,也有研究[13-14]称之为“楔形征”“劈裂征”等。既往研究[15-16]指出,“冰淇淋蛋筒征”是鉴别诊断mfAML与RCC的重要CT征象,但本研究中usRCC组和mfAML组“冰淇淋蛋筒征”占比均较低,且2组间无显著差异,其主要原因是肾肿瘤体积偏小和mfAML外生性征象不明显[17]

    本研究显示, usRCC组囊变坏死、假包膜征、实质期不均匀强化者占比均显著高于mfAML组(P < 0.05), 与相关研究[18-19]结论相符,上述CT征象亦是临床诊断RCC的常用影像学参考依据。囊变坏死、假包膜征是富血供RCC生长过程中的典型特征,肿瘤生长过快、新生血管发育不良和瘤内血供不均衡是其发生的常见原因[20]。CT增强扫描显示实质期不均匀强化是恶性肿瘤的常见影像学描述,但并非绝对概念。本研究中, 2组实质期不均匀强者占比均较高(与mfAML、RCC均为富血供有关),且usRCC组实质期不均匀强化者占比显著更高(与usRCC瘤内多囊变坏死和偏液性低密度区域有关)[21-22]。本研究结果显示, usRCC组皮质期CT值、皮质期净强化CT值、实质期净强化CT值显著高于mfAML组(P < 0.05), 且ROC曲线显示三者中实质期净强化CT值的AUC最大,为0.803(实质期净强化CT值可反映肿瘤病灶血供和强化特点)。本研究将筛选出的3个CT影像组学变量进行组合后构建简易预测模型,与单独CT形态学指标或定量参数比较,简易预测模型能结合更充分的影像学依据加以鉴别,提高诊断效能。本研究显示,预测模型鉴别诊断usRCC与mfAML的AUC为0.890(95% CI: 0.804~0.976), 敏感度、特异度和准确度依次为87.88%、76.32%和81.69%, 表明该简易预测模型具有良好的诊断效能,此外由于该模型的CT影像学指标易获取和收集,临床应用亦较为便捷。

    综上所述,本研究基于CT影像组学构建的简易预测模型对usRCC与mfAML具有良好的鉴别诊断价值,可为此类超小肾肿瘤的早期风险识别和诊疗策略制订提供影像学依据,值得临床应用和深入研究。本研究不足之处在于样本量偏少、样本选择可能存在回忆偏倚等,后续应加以完善进一步深入研究。

  • [1]

    KITZMANN A S, PULIDO J S, DIEHL N N, et al. The incidence of central serous chorioretinopathy in Olmsted County, Minnesota, 1980—2002[J]. Ophthalmology, 2008, 115(1): 169-173. doi: 10.1016/j.ophtha.2007.02.032

    [2]

    HANUMUNTHADU D, TAN A C S, SINGH S R, et al. Management of chronic central serous chorioretinopathy[J]. Indian J Ophthalmol, 2018, 66(12): 1704-1714. doi: 10.4103/ijo.IJO_1077_18

    [3]

    KAYE R, CHANDRA S, SHETH J, et al. Central serous chorioretinopathy: an update on risk factors, pathophysiology and imaging modalities[J]. Prog Retin Eye Res, 2020, 79: 100865. doi: 10.1016/j.preteyeres.2020.100865

    [4]

    WANG M, MUNCH I C, HASLER P W, et al. Central serous chorioretinopathy[J]. Acta Ophthalmol, 2008, 86(2): 126-145. doi: 10.1111/j.1600-0420.2007.00889.x

    [5]

    TONG Y, LU W, YU Y, et al. Application of machine learning in ophthalmic imaging modalities[J]. Eye Vis: Lond, 2020, 7: 22. doi: 10.1186/s40662-020-00183-6

    [6]

    LIMON U, BOZKURT E, BULUT S, et al. Elevated serum fibrinogen/albumin ratios in patients with acute central serous chorioretinopathy[J]. Eur J Ophthalmol, 2022, 32(3): 1735-1742. doi: 10.1177/11206721221089773

    [7]

    HEE M R, PULIAFITO C A, WONG C, et al. Optical coherence tomography of central serous chorioretinopathy[J]. Am J Ophthalmol, 1995, 120(1): 65-74. doi: 10.1016/S0002-9394(14)73760-2

    [8]

    VAN RIJSSEN T J, VAN DIJK E H C, YZER S, et al. Central serous chorioretinopathy: towards an evidence-based treatment guideline[J]. Prog Retin Eye Res, 2019, 73: 100770. doi: 10.1016/j.preteyeres.2019.07.003

    [9]

    XU F, XIANG Y, WAN C, et al. Predicting subretinal fluid absorption with machine learning in patients with central serous chorioretinopathy[J]. Ann Transl Med, 2021, 9(3): 242. doi: 10.21037/atm-20-1519

    [10]

    XU F, WAN C, ZHAO L, et al. Predicting post-therapeutic visual acuity and OCT images in patients with central serous chorioretinopathy by artificial intelligence[J]. Front Bioeng Biotechnol, 2021, 9: 649221. doi: 10.3389/fbioe.2021.649221

    [11]

    XU F, WAN C, ZHAO L, et al. Predicting central serous chorioretinopathy recurrence using machine learning[J]. Front Physiol, 2021, 12: 649316. doi: 10.3389/fphys.2021.649316

    [12]

    SUBHI Y, BJERAGER J, BOON C J F, et al. Subretinal fluid morphology in chronic central serous chorioretinopathy and its relationship to treatment: a retrospective analysis on PLACE trial data[J]. Acta Ophthalmol, 2022, 100(1): 89-95. doi: 10.1111/aos.14901

    [13]

    FURUTA M, ⅡDA T, KISHI S. Foveal thickness can predict visual outcome in patients with persistent central serous chorioretinopathy[J]. Ophthalmologica, 2009, 223(1): 28-31. doi: 10.1159/000161880

    [14]

    JEE D, YOON J H, RA H, et al. Predicting persistent central serous chorioretinopathy using multiple optical coherence tomographic images by deep learning[J]. Sci Rep, 2022, 12(1): 9335. doi: 10.1038/s41598-022-13473-x

    [15]

    HAGA F, MARUKO R, SATO C, et al. Long-term prognostic factors of chronic central serous chorioretinopathy after half-dose photodynamic therapy: a 3-year follow-up study[J]. PLoS One, 2017, 12(7): e0181479. doi: 10.1371/journal.pone.0181479

    [16]

    KIM Y K, RYOO N K, WOO S J, et al. Comparison of visual and anatomical outcomes of half-fluence and half-dose photodynamic therapy in eyes with chronic central serous chorioretinopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253(12): 2063-2073. doi: 10.1007/s00417-014-2926-6

    [17]

    VAN RIJSSEN T J, MOHABATI D, DIJKMAN G, et al. Correlation between redefined optical coherence tomography parameters and best-corrected visual acuity in non-resolving central serous chorioretinopathy treated with half-dose photodynamic therapy[J]. PLoS One, 2018, 13(8): e0202549. doi: 10.1371/journal.pone.0202549

    [18]

    BOLZ M, SCHMIDT-ERFURTH U, DEAK G, et al. Optical Coherence Tomographic Hyperreflective Foci[J]. Ophthalmology, 2009, 116(5): 914-920. doi: 10.1016/j.ophtha.2008.12.039

    [19]

    MO B, ZHOU H Y, JIAO X, et al. Evaluation of hyperreflective foci as a prognostic factor of visual outcome in retinal vein occlusion[J]. Int J Ophthalmol, 2017, 10(4): 605-612.

    [20]

    LEE H, LEE J, CHUNG H, et al. Baseline spectral domain optical coherence tomographic hyperreflective foci as a predictor of visual outcome and recurrence for central serous chorioretinopathy[J]. Retina, 2016, 36(7): 1372-1380. doi: 10.1097/IAE.0000000000000929

    [21]

    HANUMUNTHADU D, MATET A, RASHEED M A, et al. Evaluation of choroidal hyperreflective dots in acute and chronic central serous chorioretinopathy[J]. Indian J Ophthalmol, 2019, 67(11): 1850-1854. doi: 10.4103/ijo.IJO_2030_18

    [22]

    CHRONOPOULOS A, KAKKASSERY V, STROBEL M A, et al. The significance of pigment epithelial detachment in central serous chorioretinopathy[J]. Eur J Ophthalmol, 2021, 31(2): 556-565. doi: 10.1177/1120672120904670

    [23]

    PICCOLINO F C, DE LA LONGRAIS R R, RAVERA G, et al. The foveal photoreceptor layer and visual acuity loss in central serous chorioretinopathy[J]. Am J Ophthalmol, 2005, 139(1): 87-99. doi: 10.1016/j.ajo.2004.08.037

    [24]

    YU J, YE X, LI L, et al. Relationship between photoreceptor layer changes before half-dose photodynamic therapy and functional and anatomic outcomes in central serous chorioretinopathy[J]. Eye: Lond, 2021, 35(3): 1002-1010. doi: 10.1038/s41433-020-1018-6

    [25]

    YU J, YE X, LI L, et al. Threshold thickness of foveal outer nuclear layer associated with outcomes of photodynamic therapy in central serous chorioretinopathy[J]. Eye: Lond, 2022, 36(10): 1884-1889. doi: 10.1038/s41433-021-01762-0

    [26]

    PFAU M, VAN DIJK E H C, VAN RIJSSEN T J, et al. Estimation of current and post-treatment retinal function in chronic central serous chorioretinopathy using artificial intelligence[J]. Sci Rep, 2021, 11(1): 20446. doi: 10.1038/s41598-021-99977-4

    [27]

    HASEGAWA T, OKAMOTO M, MASUDA N, et al. Relationship between foveal microstructures and visual outcomes in eyes with resolved central serous chorioretinopathy[J]. Graefes Arch Clin Exp Ophthalmol, 2015, 253(3): 343-350. doi: 10.1007/s00417-014-2695-2

    [28] ⅡDA T, YANNUZZI L A, SPAIDE R F, et al. Cystoid macular degeneration in chronic central serous chorioretinopathy[J]. Retina, 2003, 23(1): 1-7; quiz137. https://www.cnki.com.cn/Article/CJFDTOTAL-REND202218035.htm
    [29]

    HO M, LI G, MAK A, et al. Applications of multimodal imaging in central serous chorioretinopathy evaluation[J]. J Ophthalmol, 2021, 2021: 9929864.

    [30]

    IMAMURA Y, FUJIWARA T, MARGOLIS R, et al. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy[J]. Retina, 2009, 29(10): 1469-1473. doi: 10.1097/IAE.0b013e3181be0a83

    [31]

    ZHENG F, HE J, SU Z, et al. OCT biomarkers related to subthreshold micropulse laser treatment effect in central serous chorioretinopathy[J]. BMC Ophthalmol, 2022, 22(1): 252. doi: 10.1186/s12886-022-02472-1

    [32]

    LEE J H, LEE S C, LEE C S. Comparison of half-time and half-irradiance photodynamic therapy in nonresolving central serous chorioretinopathy[J]. J Ocul Pharmacol Ther, 2020, 36(2): 109-115. doi: 10.1089/jop.2019.0003

    [33]

    NKRUMAH G, PAEZ-ESCAMILLA M, SINGH S R, et al. Biomarkers for central serous chorioretinopathy[J]. Ther Adv Ophthalmol, 2020, 12: 2515841420950846.

    [34]

    IOVINO C, AU A, CHHABLANI J, et al. Choroidal anatomic alterations after photodynamic therapy for chronic central serous chorioretinopathy: a multicenter study[J]. Am J Ophthalmol, 2020, 217: 104-113. doi: 10.1016/j.ajo.2020.04.022

    [35]

    AGRAWAL R, CHHABLANI J, TAN K A, et al. Choroidal vascularity index in central serous chorioretinopathy[J]. Retina, 2016, 36(9): 1646-1651. doi: 10.1097/IAE.0000000000001040

    [36]

    KADERLI S T, KARALEZLI A, KADERLI A, et al. Evaluation of the choroidal vascularity index after subthreshold yellow laser treatment in the patients with chronic central serous chorioretinopathy[J]. Eye: Lond, 2022, 36(9): 1826-1831. doi: 10.1038/s41433-022-02090-7

    [37]

    LEE W J, LEE J H, LEE B R. Fundus autofluorescence imaging patterns in central serous chorioretinopathy according to chronicity[J]. Eye: Lond, 2016, 30(10): 1336-1342. doi: 10.1038/eye.2016.113

    [38]

    HAN J, CHO N S, KIM K, et al. Fundus autofluorescence patterns in central serous chorioretinopathy[J]. Retina, 2020, 40(7): 1387-1394. doi: 10.1097/IAE.0000000000002580

    [39]

    SPAIDE R F, KLANCNIK J M. Fundus autofluorescence and central serous chorioretinopathy[J]. Ophthalmology, 2005, 112(5): 825-833. doi: 10.1016/j.ophtha.2005.01.003

    [40]

    OH J, KIM S W, KWON S S, et al. Correlation of fundus autofluorescence gray values with vision and microperimetry in resolved central serous chorioretinopathy[J]. Invest Ophthalmol Vis Sci, 2012, 53(1): 179-184. doi: 10.1167/iovs.11-8704

    [41]

    PRYDS A, SANDER B, LARSEN M. Characterization of subretinal fluid leakage in central serous chorioretinopathy[J]. Invest Ophthalmol Vis Sci, 2010, 51(11): 5853-5857. doi: 10.1167/iovs.09-4830

    [42]

    DARUICH A, MATET A, MARCHIONNO L, et al. ACUTE CENTRAL SEROUS CHORIORETINOPATHY: factors influencing episode duration[J]. Retina, 2017, 37(10): 1905-1915. doi: 10.1097/IAE.0000000000001443

    [43]

    MATET A, DARUICH A, ZOLA M, et al. Risk factors for recurrences of central serous chorioretinopathy[J]. Retina, 2018, 38(7): 1403-1414. doi: 10.1097/IAE.0000000000001729

    [44]

    VAN RIJSSEN T J, VAN DIJK E H C, DIJKMAN G, et al. Clinical characteristics of chronic central serous chorioretinopathy patients with insufficient response to reduced-settings photodynamic therapy[J]. Graefes Arch Clin Exp Ophthalmol, 2018, 256(8): 1395-1402. doi: 10.1007/s00417-018-4003-z

    [45]

    OZKAYA A, GARIP R, ALKIN Z, et al. The comparison of multimodal imaging findings of central serous chorioretinopathy patients in regard to the early anatomically treatment response to half-fluence photodynamic therapy: a retrospective case-control study[J]. Int J Retina Vitreous, 2017, 3: 20. doi: 10.1186/s40942-017-0073-z

    [46]

    BAHADIR AKKOC S, KAZIM EROL M, SUREN E. Macular microvascular changes in resolved central serous chorioretinopaty using spectral-domain optical coherence tomography angiography[J]. J Fr Ophtalmol, 2021, 44(5): 693-702. doi: 10.1016/j.jfo.2020.06.051

    [47]

    DURSUN M E, ERDEM S, KARAHAN M, et al. Evaluation of parafoveal vascular density using optical coherence tomography angiography in patients with central serous chorioretinopathy[J]. Lasers Med Sci, 2022, 37(2): 1147-1154. doi: 10.1007/s10103-021-03366-2

    [48]

    XU F B, ZHOU L J, LAI K B, et al. Quantitative evaluation of retinal vessel density in central serous chorioretinopathy after half-dose photodynamic therapy[J]. Curr Eye Res, 2021, 46(6): 855-864. doi: 10.1080/02713683.2020.1843684

    [49]

    CENNAMO G, MONTORIO D, COMUNE C, et al. Study of vessel density by optical coherence tomography angiography in patients with central serous chorioretinopathy after low-fluence photodynamic therapy[J]. Photodiagnosis Photodyn Ther, 2020, 30: 101742. doi: 10.1016/j.pdpdt.2020.101742

    [50]

    FERNÅNDEZ-VIGO J I, MORENO-MORILLO F J, ORTEGA-HORTAS M, et al. Early changes in choriocapillaris flow voids as an efficacy biomarker of photodynamic therapy in central serous chorioretinopathy[J]. Photodiagnosis Photodyn Ther, 2022, 38: 102862. doi: 10.1016/j.pdpdt.2022.102862

    [51]

    SACCONI R, BALDIN G, CARNEVALI A, et al. Response of central serous chorioretinopathy evaluated by multimodal retinal imaging[J]. Eye: Lond, 2018, 32(4): 734-742. doi: 10.1038/eye.2017.295

  • 期刊类型引用(3)

    1. 曾玉姗. CT增强扫描对小肾肿瘤良恶性的鉴别诊断价值. 影像研究与医学应用. 2025(01): 124-126 . 百度学术
    2. 谢程,万晨浩,洪欣. Cath-D、miR-21水平联合双能量CT能谱数据对肾癌和乏脂肪肾错构瘤的鉴别诊断. 中国医学创新. 2024(34): 165-169 . 百度学术
    3. 陈金才,李德新. 评估能谱CT对于乏脂肪肾血管平滑肌脂肪瘤与肾嫌色细胞癌的鉴别价值. 影像研究与医学应用. 2023(20): 59-61 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-10-24
  • 网络出版日期:  2023-03-14
  • 刊出日期:  2023-02-27

目录

/

返回文章
返回
x 关闭 永久关闭