幽门螺杆菌的耐药机制及应对策略

邵慧娟, 李初谊, 于晓辉, 张久聪

邵慧娟, 李初谊, 于晓辉, 张久聪. 幽门螺杆菌的耐药机制及应对策略[J]. 实用临床医药杂志, 2023, 27(2): 139-144. DOI: 10.7619/jcmp.20223080
引用本文: 邵慧娟, 李初谊, 于晓辉, 张久聪. 幽门螺杆菌的耐药机制及应对策略[J]. 实用临床医药杂志, 2023, 27(2): 139-144. DOI: 10.7619/jcmp.20223080
SHAO Huijuan, LI Chuyi, YU Xiaohui, ZHANG Jiucong. Drug resistance mechanism of Helicobacter pylori and its countermeasures[J]. Journal of Clinical Medicine in Practice, 2023, 27(2): 139-144. DOI: 10.7619/jcmp.20223080
Citation: SHAO Huijuan, LI Chuyi, YU Xiaohui, ZHANG Jiucong. Drug resistance mechanism of Helicobacter pylori and its countermeasures[J]. Journal of Clinical Medicine in Practice, 2023, 27(2): 139-144. DOI: 10.7619/jcmp.20223080

幽门螺杆菌的耐药机制及应对策略

基金项目: 

甘肃省自然科学基金面上项目 21JR7RA002

甘肃省自然科学基金青年项目 22JR5RA1012

甘肃省非感染性肝病临床医学研究中心 21JR7RA017

中央高校优秀青年团队培育项目 31920220065

详细信息
    通讯作者:

    张久聪, E-mail: zhangjiucong@163.com

  • 中图分类号: R573;Q786

Drug resistance mechanism of Helicobacter pylori and its countermeasures

  • 摘要:

    幽门螺杆菌(Hp)是一种革兰氏阴性菌, 主要定植于胃和十二指肠,可引起胃炎、消化性溃疡和胃癌等疾病。抗生素是目前根除Hp的主要治疗药物,但随着抗生素的广泛应用, Hp的耐药性也逐年上升。本研究就Hp常用抗生素的耐药基因突变位点、新型检测方法和治疗药物进行综述,为根除Hp、选择敏感抗生素及制订个体化疗法提供参考。

    Abstract:

    Helicobacter pylori (Hp) is a Gram-negative bacterium that mainly colonizes the stomach and duodenum, which can cause gastritis, peptic ulcer and gastric cancer. Antibiotics are the main therapeutic drugs for eradicating Hp at present. However, but with the widely application of antibiotics, the drug resistance of Hp is also increasing year by year. This paper reviewed the mutation sites of resistance genes in the commonly used antibiotics for Hp, the new detection methods and therapeutic drugs, in order to provide reference for eradicating Hp, selecting sensitive antibiotics and formulating individualized therapy.

  • 幽门螺杆菌(Hp)是一种螺旋形、微需氧、有鞭毛的革兰氏阴性杆菌,主要定植于胃的黏液层,部分也可附着于分泌黏液的胃上皮细胞表面。2015年《京都全球幽门螺杆菌胃炎共识报告》[1]将Hp引起的胃炎定义为一种感染性疾病,具有传染性和致病性。机体感染Hp可引起慢性胃炎、消化性溃疡、黏膜相关淋巴组织(MALT)淋巴瘤、胃癌等疾病[2], 根除Hp不仅可减轻患者的症状,最大限度地降低感染严重并发症的风险,同时降低胃癌发生率[3-4]。Maastricht V/Florence共识[5]已将Hp感染者的根除治疗范围扩大至无症状感染者。目前,中国Hp的根除治疗以至少2种抗生素为主,主要有克拉霉素、甲硝唑、左氧氟沙星、阿莫西林、呋喃唑酮、四环素等,但随着抗生素的广泛使用, Hp对抗生素的耐药性也易导致治疗失败,研究[6]发现主要耐药机制为抗菌靶基因发生突变可使细菌逃避抗菌药物的作用。本研究就Hp对抗生素耐药的分子机制、新型检测及治疗方案进行综述。

    目前报道Hp的感染率在全球范围内超过50%[7], 同时Hp对抗生素的耐药率逐年上升,以克拉霉素、左氧氟沙星、甲硝唑最为显著,研究[8]表明印度和中国在亚洲地区都出现了克拉霉素的高水平耐药,中国对克拉霉素的耐药率普遍较高,多在20%以上。KOCSMÁR É等[9]发现在克拉霉素初治的Hp感染者中, 5.5%的患者出现耐药; 在原发性耐药中, 98.7%起源于耐药菌株的感染, 1.3%来自于耐药基因的突变,并且性别差异不显著; 在继发性耐药中,克拉霉素的耐药率与患者的性别、年龄相关。由于甲硝唑可广泛用于治疗各种感染,如厌氧菌和寄生虫感染、腹泻、牙科和妇科疾病等,导致甲硝唑出现高耐药率,多数地区高达40%以上[8]。中国的一项多中心研究[10]得出,2010—2016年Hp对甲硝唑、克拉霉素、左氧氟沙星、阿莫西林和四环素的初次耐药率分别为78.2%、22.1%、19.2%、3.4%和1.9%, 由于克拉霉素、甲硝唑和左氧氟沙星的高耐药率,使得标准三联疗法的效果大大降低[11]。因此,对Hp感染者耐药状况进行监测并实施个体化治疗已成为必要,但目前对中国人群Hp耐药的大规模、多区域研究还不够充分。

    克拉霉素属于大环内酯类抗生素,其抑菌机制主要是与细菌核糖体50 s亚基结合,通过阻断转肽作用及mRNA的移位而抑制Hp蛋白质的合成。近年来Hp对克拉霉素产生耐药,且多为Hp的23SrRNA的V区发生点突变,使核糖体的构象发生变化,进而改变结合位点,使二者亲和力减弱,不能很好地抑制Hp蛋白质的合成,导致根除治疗失败。

    研究[12]进一步证实Hp对克拉霉素耐药最常见的点突变是23SrRNA基因V区的A2142G和A2143G。在一项回顾性研究[13]中发现A2142G点突变率为37.7%, 其中A2143G单突变最常见,其次是A2142G和双点突变,并指出在A2142G突变组中三联与四联疗法的有效率无显著差异,但在A2143G或A2142G和A2143G同时突变时,三联和四联疗法的根治率分别为25.8%和92.1%(P < 0.001), 可见针对A2143G突变者,四联疗法显著优于三联疗法[14]。PARK C G等[15]对295例Hp感染者菌株的23SrRNA行DNA测序分析,发现A2143G是最常见的点突变(24.7%), 其次是A2182T突变(11.5%), 携带A2143G者克拉霉素三联疗法根除失败率高达60%, 表明A2143G是Hp根除失败的高危突变基因,并且A2143G的存在与既往根除病史和性别有关,因此提出基于23SrRNA基因的个体化治疗可提高根除成功率。

    甲硝唑属于硝基咪唑类药物,研究[16-17]表明Hp对甲硝唑产生耐药性主要与RdxAFrxA基因失活有关,其中RdxA基因编码对氧不敏感的NADPH硝基还原酶, FrxA基因编码黄素氧化还原酶。LEE S M等[18]研究发现, RdxA的无义突变降低了Hp的根除效果(P=0.009), 并且与RdxA(+)FrxA(+)相比,在二者基因均不表达的耐药菌株中, hefA表达显著升高(P < 0.001), 这表明hefA可能参与甲硝唑的耐药。有研究[19]发现RpsU基因参与Hp菌体蛋白质合成的同时也与甲硝唑耐药相关。

    此外,在甲硝唑耐药和敏感的菌株中均发现大量RdxA的错义突变,且FrxA突变仅在RdxA突变存在时增强Hp的耐药性[20]。值得注意的是,除了无义突变和移码突变外, RdxA中的氨基酸替换包括R16H、Y46H、P51L和A67V, 已被报道为可能导致甲硝唑耐药的原因[21], 这表明很难通过检测基因突变位点来识别甲硝唑的耐药性,限制了PCR在检测甲硝唑耐药方面的应用。因此, Hp对甲硝唑耐药可能还存在其他未知的突变位点[22], 对其耐药基因还需进一步深入研究。

    左氧氟沙星是一种广谱抗生素,属于第3代喹诺酮类药物,主要通过抑制细菌DNA回旋酶的活性来抗Hp, 阻断细菌DNA的合成和复制,从而产生杀菌作用。DNA回旋酶由2个亚基组成,即gyrA和gyrB, 且分别由gyrA基因和gyrB基因编码。研究[23]报道gyrA发生点突变导致gyrA空间构象改变,使左氧氟沙星不能结合gyrA, 阻断了抑制Hp基因组的复制而导致耐药。目前已确定gyrA基因喹诺酮耐药决定区(QRDR)的Asn87和Asp91点突变与左氧氟沙星产生耐药相关[24-26]。另外,还有gyrA的其他突变位点包括Ala88、Ala97和Met191, 以及gyrB的Phe438、Glu463、Asp481和Arg484突变[27]。YE L P等[28]发现gyrA的Asn87较Asp91突变对左氧氟沙星可产生更强的耐药性,二者同时突变进一步增强耐药性,而gyrB中Asp481和Arg484同时突变则不会明显增强耐药性。

    阿莫西林通过与青霉素结合蛋白(PBPs)结合来抑制Hp细胞壁的合成,从而抑制细菌的生长[29]。近年来随着阿莫西林用量的逐渐增加,根除治疗失败后全球Hp菌株对阿莫西林耐药性有所增加[30]。研究[31]报道导致阿莫西林对Hp产生低到中等耐药性的主要机制是PBP1基因的点突变。KUO C J等[32]研究发现PBP-1A的C末端区域存在多个突变。研究[33]表明多数胃黏膜标本在-80 ℃超低温保存3个月后可检测出Hp对阿莫西林的耐药率有所下降,而超低温保存后PBP1HEFC基因均未发现突变,可能与编码膜结构和转运功能的相关基因下调有关。值得注意的是, rfaF保守序列的突变率很高,可通过降低细胞膜对药物的通透性,从而使Hp对抗生素产生耐药, rfaF突变可导致Hp对阿莫西林、四环素和克拉霉素耐药,其中以K331R突变最常见(占突变总数的44.44%)[34]

    Hp的多重耐药问题日益严重,其中亚洲国家的多重耐药率普遍高于西方国家[35]。研究[36]发现HP0939、HP0497和HP0471转运蛋白在多重耐药菌株中高表达,导致Hp对抗生素的外排能力增强,同时抑制生物膜的形成,当这3种转运蛋白基因敲除时,会增加Hp对多种抗生素的敏感性,说明他们与多重耐药密切相关。胃黏膜表面形成生物膜是Hp难以根除的重要原因, ZHAO Y C等[37]研究表明中性粒细胞激活蛋白(NAPA、HP0243)促进过氧化氢诱导的生物被膜形成,进而参与Hp的多重耐药。Hp菌株生物被膜的形成降低了其对阿莫西林和甲硝唑的敏感性[38]。因此,针对Hp生物被膜最低抑菌浓度的研究对开发根除方案具有重要意义。

    此外,药物外排泵的过度表达也是Hp多重耐药的原因。外排泵是一种存在于Hp细胞膜上的多药转运蛋白,该泵将抗菌药物输送出细胞,降低了细胞内抗菌药物的浓度,从而增加了耐药性[39]。值得注意的是,研究[40]表明外排泵基因Hp605Hp971Hp1327Hp1489Hp118Hp1174的表达在可形成生物膜的Hp中显著高于浮游细菌,这意味着外排泵和生物膜协同作用增加Hp的耐药性。

    通过检测Hp耐药基因突变位点可替代耗时的药敏试验。一项利用聚合酶链式反应-高分辨熔解曲线(HRM-PCR)对甘肃地区Hp克拉霉素耐药表型的检测发现,其与传统E-Test药敏方法一致性高达96.23%, 或可代替E-Test成为一种便捷、快速的新方法,从而指导临床用药。黄声雷等[41]对上海80例胃黏膜组织标本使用HRM-PCR检测得出的Hp阳性率为86.2%, 克拉霉素的突变位点主要为23SrRNA第2142或2143位,突变率34.8%, DNA测序法得出Hp阳性率为80.0%, 突变位点主要为A2143G, 两种方法检测Hp耐药基因突变的阳性符合率、阴性符合率和总符合率分别为87.0%、95.1%和92.2%, Kappa系数为0.829, 进一步证明两者一致性较好。

    环介导的等温扩增法(LAMP)灵敏度高、反应时间短,与快速尿素酶法(RUT)在检测Hp方面一致性较高(Kappa值为0.923, P < 0.001), 并且LAMP检测A2182C点突变与DNA测序符合率达97.7%(42/43)[42]。ZHAO Y等[43]研究发现操作简便的TaqMan-MGB探针多重实时PCR法在诊断Hp感染的同时可检测左氧氟沙星和克拉霉素的16SrDNA23SrDNAgyrA基因的部分序列和突变位点,结果与金标准Sanger测序的Kappa值均超过90%, 表明该法更适合缺乏技术人员的基层医疗机构。此外,基因芯片法诊断Hp感染的敏感性、特异性和准确性分别为96.1%、85.0%和93.6%, 同时检测克拉霉素、左氧氟沙星以及阿莫西林耐药基因突变位点与DNA测序的一致率均在95%以上[44]。这些新型的、操作简单的检测方法有助于临床医生为患者提供个体化的治疗,将为耐药Hp的检测提供新的视角,有利于避免抗生素滥用,进而抗击Hp的全球流行。

    Hp的根除治疗方案主要由抗生素和质子泵抑制剂组成,抗生素在根除病原体方面起主要作用,而PPI则抑制胃酸分泌,从而增强抗生素的效果。三联疗法由PPI联合甲硝唑和阿莫西林或克拉霉素组成,由于Hp对克拉霉素的耐药率增加,导致该方案疗效下降,含铋剂四联疗法已被证实是根除Hp的有效方案,特别是在抗生素耐药的菌株中,大剂量质子泵抑制剂与阿莫西林联合治疗可减少抗生素的使用。目前随着抗生素耐药率的不断上升,寻找具有抗Hp活性的新型药物可作为其辅助治疗。

    标准抗生素联合益生菌在治疗Hp感染中起重要作用, KEIKHA M等[45]研究表明,益生菌除了可以减轻胃肠道症状外,还可以通过改变肠道微生物群来减少抗生素的副作用(尤其是腹泻),干酪乳杆菌、瑞氏乳杆菌、鼠李糖乳杆菌和布氏酵母菌均能有效抑制Hp感染。乳酸杆菌作为三联疗法的补充,可提高其疗效,减少成人和儿童与疗法相关腹泻的发生率[46], 路氏乳杆菌作为单一治疗可抑制Hp的生长,作为抗生素的佐剂,在提高治愈率的同时减轻胃肠道症状[47], 根除Hp可能导致肠道微生物群的多重转移和改变。然而,补充枯草芽孢杆菌和屎肠球菌则可以保护和恢复肠道微生物群[48]

    一项在体外观察温度对Hp和甲硝唑的研究[49]发现,在41 ℃时, Hp的生长开始受到抑制,并且随着培养时间延长,抑制作用更加显著,同时降低了Hp对甲硝唑的耐药性,其中氧化还原途径可能是温度诱导甲硝唑耐药性变化的潜在驱动因素,同时测序证实了关键的耐药基因RdxA、FrxA和FdxB不会随着温度的升高而发生突变。研究[50-52]表明哺乳动物的胃黏膜可以耐受高达46 ℃的温度,局部温度的升高有助于在体内根除Hp, 以此来辅助抗生素的治疗。因此,可使用纳米材料进行局部光热/磁热治疗。研究[53]报道了一种口服发热纳米探针可以在红外激光照射下靶向杀死动物胃黏膜中的Hp菌株。

    磷霉素是一种广谱抗生素,可抑制Hp细胞壁的合成,对多重耐药的致病菌株有抗菌活性,磷霉素与克拉霉素、阿莫西林,特别是与甲硝唑联合作用于多重耐药的Hp菌株,可明显提高抗菌作用[54]。值得注意的是,将罂粟科植物提取物与抗生素相结合,吸附到有机体细菌纤维素载体上,观察到Hp的生物膜水平显著下降,表明该化合物可抑制其生物膜的生长[55]。研究[56]发现芳香链霉菌甲醇提取物可作用于Hp耐药菌株的细胞毒素相关基因,并显著抑制Hp生长,这为根除Hp的治疗提供了一种新的方案。

    综上所述, Hp具有传染性和致病性, Hp根除治疗失败主要因抗生素耐药导致,其机制包括抗生素耐药基因突变、药物外排泵及生物膜的作用,具体的机制尚不明确。目前治疗方案主要以三联/四联方案为主,益生菌、中药成分等可作为辅助治疗。由于Hp耐药率的逐年上升,基于药敏试验及新型检测手段来进一步明确Hp耐药的分子机制十分重要,有助于临床医生为Hp感染者制订个体化的诊疗方案。

  • [1]

    SUGANO K, TACK J, KUIPERS E J, et al. Kyoto global consensus report on Helicobacter pylori gastritis[J]. Gut, 2015, 64(9): 1353-1367. doi: 10.1136/gutjnl-2015-309252

    [2] 柴蕴珠, 王艳红, 徐宏蕊. 消化内科住院患者幽门螺旋杆菌感染情况[J]. 华南预防医学, 2021, 47(1): 77-79, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-GDWF202101020.htm
    [3]

    LI H, YANG T K, TANG H, et al. Helicobacter pylori infection is an infectious disease and the empiric therapy paradigm should be changed[J]. Precis Clin Med, 2019, 2(2): 77-80. doi: 10.1093/pcmedi/pbz009

    [4]

    LIOU J M, MALFERTHEINER P, LEE Y C, et al. Screening and eradication of Helicobacter pylori for gastric cancer prevention: the Taipei global consensus[J]. Gut, 2020, 69(12): 2093-2112. doi: 10.1136/gutjnl-2020-322368

    [5]

    MALFERTHEINER P, MEGRAUD F, ROKKAS T, et al. Management of Helicobacter pylori infection: the Maastricht VI/Florence consensus report[J]. Gut, 2022: gutjnl-gu2022-327745.

    [6] 侯宠, 刘一品. 幽门螺杆菌抗菌药物耐药分子机制的研究进展[J]. 胃肠病学, 2021, 26(3): 171-175. doi: 10.3969/j.issn.1008-7125.2021.03.009
    [7]

    KHODER G, MUHAMMAD J S, MAHMOUD I, et al. Prevalence of Helicobacter pylori and its associated factors among healthy asymptomatic residents in the united Arab emirates[J]. Pathogens, 2019, 8(2): 44. doi: 10.3390/pathogens8020044

    [8]

    GHOTASLOU R, LEYLABADLO H E, ASL Y M. Prevalence of antibiotic resistance in Helicobacter pylori: a recent literature review[J]. World J Methodol, 2015, 5(3): 164-174. doi: 10.5662/wjm.v5.i3.164

    [9]

    KOCSMÁR É, BUZÁS G M, SZIRTES I, et al. Primary and secondary clarithromycin resistance in Helicobacter pylori and mathematical modeling of the role of macrolides[J]. Nat Commun, 2021, 12(1): 2255. doi: 10.1038/s41467-021-22557-7

    [10]

    ZHANG Y X, ZHOU L Y, SONG Z Q, et al. Primary antibiotic resistance of Helicobacter pylori strains isolated from patients with dyspeptic symptoms in Beijing: a prospective serial study[J]. World J Gastroenterol, 2015, 21(9): 2786-2792. doi: 10.3748/wjg.v21.i9.2786

    [11]

    LIU W Z, XIE Y, LU H, et al. Fifth Chinese National Consensus Report on the management of Helicobacter pylori infection[J]. Helicobacter, 2018, 23(2): e12475. doi: 10.1111/hel.12475

    [12]

    SARANATHAN R, LEVI M H, WATTAM A R, et al. Helicobacter pylori infections in the Bronx, New York: surveying antibiotic susceptibility and strain lineage by whole-genome sequencing[J]. J Clin Microbiol, 2020, 58(3): e01591-e01519.

    [13]

    SARUULJAVKHLAN B, YAMAOKA Y. Benefits of a molecular-based method for the detection of clarithromycin-resistant Helicobacter pylori[J]. Gut Liver, 2021, 15(4): 487-489. doi: 10.5009/gnl210278

    [14]

    KIM S Y, PARK J M, LIM C H, et al. Types of 23S ribosomal RNA point mutations and therapeutic outcomes for Helicobacter pylori[J]. Gut Liver, 2021, 15(4): 528-536. doi: 10.5009/gnl20225

    [15]

    PARK C G, KIM S, LEE E J, et al. Clinical relevance of point mutations in the 23S rRNA gene in Helicobacter pylori eradication: a prospective, observational study[J]. Medicine (Baltimore), 2018, 97(33): e11835. doi: 10.1097/MD.0000000000011835

    [16]

    CHUA E G, DEBOWSKI A W, WEBBERLEY K M, et al. Analysis of core protein clusters identifies candidate variable sites conferring metronidazole resistance in Helicobacter pylori[J]. Gastroenterol Rep (Oxf), 2019, 7(1): 42-49. doi: 10.1093/gastro/goy048

    [17]

    MARQUES B, DONATO M M, CARDOSO O, et al. Study of rdxA and frxA genes mutations in metronidazole-resistant and-susceptible Helicobacter pylori clinical isolates from the central region of Portugal[J]. J Glob Antimicrob Resist, 2019, 17: 300-304. doi: 10.1016/j.jgar.2019.01.008

    [18]

    LEE S M, KIM N, KWON Y H, et al. rdxA, frxA, and efflux pump in metronidazole-resistant Helicobacter pylori: their relation to clinical outcomes[J]. J Gastroenterol Hepatol, 2018, 33(3): 681-688. doi: 10.1111/jgh.13906

    [19]

    BINH T T, SUZUKI R, TRANG T T, et al. Search for novel candidate mutations for metronidazole resistance in Helicobacter pylori using next-generation sequencing[J]. Antimicrob Agents Chemother, 2015, 59(4): 2343-2348. doi: 10.1128/AAC.04852-14

    [20]

    GONZALEZ-HORMAZABAL P, MUSLEH M, ESCANDAR S, et al. Prevalence of clarithromycin resistance in Helicobacter pylori in Santiago, Chile, estimated by real-time PCR directly from gastric mucosa[J]. BMC Gastroenterol, 2018, 18(1): 91. doi: 10.1186/s12876-018-0820-0

    [21]

    MIFTAHUSSURUR M, SHRESTHA P K, SUBSOMWONG P, et al. Emerging Helicobacter pylori levofloxacin resistance and novel genetic mutation in Nepal[J]. BMC Microbiol, 2016, 16(1): 256. doi: 10.1186/s12866-016-0873-6

    [22]

    ZHONG Z S, ZHANG Z Y, WANG J, et al. A retrospective study of the antibiotic-resistant phenotypes and genotypes of Helicobacter pylori strains in China[J]. Am J Cancer Res, 2021, 11(10): 5027-5037.

    [23]

    ZERBETTO DE PALMA G, MENDIONDO N, WONAGA A, et al. Occurrence of mutations in the antimicrobial target genes related to levofloxacin, clarithromycin, and amoxicillin resistance in Helicobacter pylori isolates from Buenos Aires city[J]. Microb Drug Resist, 2017, 23(3): 351-358. doi: 10.1089/mdr.2015.0361

    [24]

    LEE J W, KIM N, NAM R H, et al. Mutations of Helicobacter pylori associated with fluoroquinolone resistance in Korea[J]. Helicobacter, 2011, 16(4): 301-310. doi: 10.1111/j.1523-5378.2011.00840.x

    [25]

    GENG T, YU Z S, ZHOU X X, et al. Antibiotic resistance of Helicobacter pylori isolated from children in Chongqing, China[J]. Eur J Pediatr, 2022, 181(7): 2715-2722. doi: 10.1007/s00431-022-04456-1

    [26]

    VIANNA J S, RAMIS I B, RAMOS D F, et al. The interplay between mutations in cagA, 23S rRNA, gyrA and drug resistance in Helicobacter pylori[J]. Rev Inst Med Trop Sao Paulo, 2018, 60: e25.

    [27]

    TEH X, KHOSRAVI Y, LEE W C, et al. Functional and molecular surveillance of Helicobacter pylori antibiotic resistance in Kuala Lumpur[J]. PLoS One, 2014, 9(7): e101481. doi: 10.1371/journal.pone.0101481

    [28]

    YE L P, MENG F, MAO X L, et al. Using next-generation sequencing to analyze Helicobacter pylori clones with different levofloxacin resistances from a patient with eradication failure[J]. Medicine (Baltimore), 2020, 99(32): e20761. doi: 10.1097/MD.0000000000020761

    [29]

    TSHIBANGU-KABAMBA E, YAMAOKA Y. Helicobacter pylori infection and antibiotic resistance-from biology to clinical implications[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(9): 613-629. doi: 10.1038/s41575-021-00449-x

    [30]

    THUNG I, ARAMIN H, VAVINSKAYA V, et al. Review article: the global emergence of Helicobacter pylori antibiotic resistance[J]. Aliment Pharmacol Ther, 2016, 43(4): 514-533. doi: 10.1111/apt.13497

    [31]

    KIM B J, KIM J G. Substitutions in penicillin-binding protein 1 in amoxicillin-resistant Helicobacter pylori strains isolated from Korean patients[J]. Gut Liver, 2013, 7(6): 655-660. doi: 10.5009/gnl.2013.7.6.655

    [32]

    KUO C J, KE J N, KUO T, et al. Multiple amino acid substitutions in penicillin-binding protein-1A confer amoxicillin resistance in refractory Helicobacter pylori infection[J]. Wei Mian Yu Gan Ran Za Zhi, 2023, 56(1): 40-47. doi: 10.1016/j.jmii.2022.07.006

    [33]

    HAN X R, ZHANG Y Y, HE L H, et al. Genetic and transcriptomic variations for amoxicillin resistance in Helicobacter pylori under cryopreservation[J]. Pathogens, 2021, 10(6): 676. doi: 10.3390/pathogens10060676

    [34]

    LIN J S, ZHANG X Y, WEN Y C, et al. A newly discovered drug resistance gene rfaF in Helicobacter pylori[J]. Infect Drug Resist, 2019, 12: 3507-3514. doi: 10.2147/IDR.S231152

    [35]

    TUAN V P, NARITH D, TSHIBANGU-KABAMBA E, et al. A next-generation sequencing-based approach to identify genetic determinants of antibiotic resistance in Cambodian Helicobacter pylori clinical isolates[J]. J Clin Med, 2019, 8(6): 858. doi: 10.3390/jcm8060858

    [36]

    CAI Y Y, WANG C X, CHEN Z H, et al. Transporters HP0939, HP0497, and HP0471 participate in intrinsic multidrug resistance and biofilm formation in Helicobacter pylori by enhancing drug efflux[J]. Helicobacter, 2020, 25(4): e12715.

    [37]

    ZHAO Y C, CAI Y Y, CHEN Z H, et al. SpoT-mediated NapA upregulation promotes oxidative stress-induced Helicobacter pylori biofilm formation and confers multidrug resistance[J]. Antimicrob Agents Chemother, 2021, 65(5): e00152-e00121.

    [38]

    YONEZAWA H, OSAKI T, HOJO F, et al. Effect of Helicobacter pylori biofilm formation on susceptibility to amoxicillin, metronidazole and clarithromycin[J]. Microb Pathog, 2019, 132: 100-108. doi: 10.1016/j.micpath.2019.04.030

    [39]

    HOU C, YIN F X, WANG S, et al. Helicobacter pylori biofilm-related drug resistance and new developments in its anti-biofilm agents[J]. Infect Drug Resist, 2022, 15: 1561-1571. doi: 10.2147/IDR.S357473

    [40]

    GE X R, CAI Y Y, CHEN Z H, et al. Bifunctional enzyme SpoT is involved in biofilm formation of Helicobacter pylori with multidrug resistance by upregulating efflux pump Hp1174 (gluP)[J]. Antimicrob Agents Chemother, 2018, 62(11): e00957-e00918.

    [41] 黄声雷, 郭玮, 胡必杰, 等. 上海地区幽门螺杆菌对克拉霉素耐药的相关基因检测[J]. 中国感染与化疗杂志, 2019, 19(5): 548-552. doi: 10.16718/j.1009-7708.2019.05.016
    [42]

    PARK C G, KIM S, JEON H S, et al. Validation of loop-mediated isothermal amplification to detect Helicobacter pylori and 23S rRNA mutations: a prospective, observational clinical cohort study[J]. J Clin Lab Anal, 2021, 35(1): e23563.

    [43]

    ZHAO Y, LI Y, LUAN Z X, et al. Establishment of a TaqMan-MGB probe multiplex real-time PCR system for one-step levofloxacin and clarithromycin resistant Helicobacter pylori detection[J]. J Microbiol Methods, 2022, 192: 106393. doi: 10.1016/j.mimet.2021.106393

    [44]

    YIN G F, BIE S X, GU H D, et al. Application of gene chip technology in the diagnostic and drug resistance detection of Helicobacter pylori in children[J]. J Gastroenterol Hepatol, 2020, 35(8): 1331-1339. doi: 10.1111/jgh.14980

    [45]

    KEIKHA M, KARBALAEI M. Probiotics as the live microscopic fighters against Helicobacter pylori gastric infections[J]. BMC Gastroenterol, 2021, 21(1): 388. doi: 10.1186/s12876-021-01977-1

    [46]

    FANG H R, ZHANG G Q, CHENG J Y, et al. Efficacy of Lactobacillus-supplemented triple therapy for Helicobacter pylori infection in children: a meta-analysis of randomized controlled trials[J]. Eur J Pediatr, 2019, 178(1): 7-16. doi: 10.1007/s00431-018-3282-z

    [47]

    DARGENIO C, DARGENIO V N, BIZZOCO F, et al. Limosilactobacillus reuteri strains as adjuvants in the management of Helicobacter pylori infection[J]. Medicina (Kaunas), 2021, 57(7): 733. doi: 10.3390/medicina57070733

    [48]

    WU L L, WANG Z K, SUN G, et al. Effects of anti-H. pylori triple therapy and a probiotic complex on intestinal microbiota in duodenal ulcer[J]. Sci Rep, 2019, 9(1): 12874. doi: 10.1038/s41598-019-49415-3

    [49]

    GONG M L, HAN Y J, WANG X N, et al. Effect of temperature on metronidazole resistance in Helicobacter pylori[J]. Front Microbiol, 2021, 12: 681911. doi: 10.3389/fmicb.2021.681911

    [50]

    MOCAN L, TABARAN F A, MOCAN T, et al. Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles[J]. Int J Nanomedicine, 2017, 12: 2255-2263. doi: 10.2147/IJN.S124778

    [51]

    CHEN W F, WANG Y, QIN M, et al. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy[J]. ACS Nano, 2018, 12(6): 5995-6005. doi: 10.1021/acsnano.8b02235

    [52]

    WU T, WANG L C, GONG M L, et al. Synergistic effects of nanoparticle heating and amoxicillin on H. pylori inhibition[J]. J Magn Magn Mater, 2019, 485: 95-104.

    [53]

    ZHI X, LIU Y L, LIN L N, et al. Oral pH sensitive GNS@ab nanoprobes for targeted therapy of Helicobacter pylori without disturbance gut microbiome[J]. Nanomed-Nanotechnol Biol Med, 2019, 20: 102019.

    [54]

    ABOUWARDA A M, ISMAIL T A, ABU EL-WAFA W M, et al. Synergistic activity and molecular modelling of fosfomycin combinations with some antibiotics against multidrug resistant Helicobacter pylori[J]. World J Microbiol Biotechnol, 2022, 38(6): 102.

    [55]

    KRZYZEK P, JUNKA A, SŁUPSKI W, et al. Antibiofilm and antimicrobial-enhancing activity of Chelidonium majus and Corydalis cheilanthifolia extracts against multidrug-resistant Helicobacter pylori[J]. Pathogens, 2021, 10(8): 1033.

    [56]

    EL-SHOUNY W A, ALI S S, HEGAZY H M, et al. Syzygium aromaticum L. : traditional herbal medicine against cagA and vacA toxin genes-producing drug resistant Helicobacter pylori[J]. J Tradit Complement Med, 2020, 10(4): 366-377.

  • 期刊类型引用(3)

    1. 徐贝,李萍,朱传卫,张青松. 幽门螺杆菌耐药基因检测在临床精准治疗中的价值. 热带病与寄生虫学. 2024(04): 244-247 . 百度学术
    2. 龙科言,熊文晓,赵曼羽,孙东雷,张遵真. 幽门螺杆菌在环境和口腔检出现状及传播途径研究进展. 现代预防医学. 2023(11): 2107-2112 . 百度学术
    3. 田志华,丁媛,王少丽,李萌,陈丁铭,罗楠,周铃,刘震. 基于网络药理学和分子对接分析姚乃礼教授健脾祛湿解毒通络方治疗幽门螺杆菌感染的机制. 浙江中医药大学学报. 2023(10): 1217-1225+1234 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  238
  • HTML全文浏览量:  643
  • PDF下载量:  54
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-10-09
  • 网络出版日期:  2023-02-17

目录

/

返回文章
返回