Research progress on adaptability of patients with chemotherapy-induced peripheral neuropathy
-
摘要: 化疗致周围神经病变(CIPN)是化疗常见的副反应, 且为无法有效解决的症状之一,严重影响患者的身心健康和适应水平。本文就适应的概述、适应的评估工具与CIPN测量量表、化疗致外周神经毒性患者适应水平的影响因素和干预措施进行综述。化疗致外周神经毒性患者适应水平的影响因素错综复杂,干预方式还需进一步挖掘和改善,干预效果需进一步验证,本文旨在为今后扩大临床应用和深入研究提供参考。Abstract: Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of chemotherapy, and is one of the symptoms that cannot be effectively resolved, which seriously affects the physical and mental health and adaptation level of patients. This paper reviewed the overview of adaptation, assessment tools and CIPN scale of adaptation, influencing factors and intervention measures of adaptation in patients with chemotherapy-induced peripheral neurotoxicity. The factors influencing the adaptation level of patients with chemotherapy-induced peripheral neurotoxicity are complex, the intervention methods need to be further explored and improved, and the intervention effects need to be further verified, which can provide reference for further clinical application and in-depth research in the future.
-
骨骼肌减少症是一种进行性和广泛性的骨骼肌疾病, 主要表现为骨骼肌含量减少,伴肌肉力量和躯体功能下降[1], 也称为肌少症。维持性血液透析(MHD)是终末期肾脏病(ESRD)患者的重要替代治疗方式,但ESRD患者在长期MHD治疗过程中会出现尿毒症毒素潴留、微炎症状态、酸碱平衡失调、营养不良等不良反应[2], 易成为肌少症的高发人群。研究[3-4]显示慢性阻塞性肺疾病、恶性肿瘤等慢性消耗性疾病参与了肌少症的发生。研究[5-6]显示,肌少症不仅降低了患者的生活质量,还增加了患者心血管疾病并发症的风险及病死率。目前,基于肌少症发病率、进展、相关危险因素及预后的研究仍存在很大差异[7]。本研究探讨ESRD行MHD患者肌少症的相关影响因素,现将结果报告如下。
1. 资料与方法
1.1 一般资料
选取2021年9月—2022年12月在贵州医科大学附属医院血液净化中心规律行MHD的197例ESRD患者为研究对象。纳入标准: ①接受血液透析治疗且透析时间≥3个月者; ②年龄18~80岁者; ③自愿签署知情同意书者。排除标准: ①存在生物电阻抗试验禁忌证者,例如体内存在金属支架或起搏器而影响人体成分检测; ②合并其他严重消耗性疾病者,例如恶性肿瘤、重症感染、肝硬化、自身免疫性疾病等; ③ 3个月内有过急性感染或出血者; ④糖尿病足或截肢患者; ⑤意识不清或无法配合者; ⑥严重胃肠道疾病者,例如胃肠部分切除术。参考2019年亚洲肌少症工作组[8](AWGS)的诊断标准将患者分为肌少症组和非肌少症组。本研究经过贵州医科大学附属医院伦理委员会同意(批件号: 2023伦申第352号),所有纳入患者均知情同意且自愿参加本研究。
1.2 研究方法
1.2.1 资料收集:
研究人员通过口头询问及查阅病历的方式完成资料收集,包括年龄、性别、是否合并糖尿病、是否合并继发性甲状旁腺功能亢进症、是否合并高血压、透析龄、透析方式等。
1.2.2 实验室指标:
收集患者3个月内最近一次透析前静脉血实验室检测指标,包括血红蛋白、血小板、白细胞、肌酐、尿素、尿酸、甘油三酯、血清白蛋白、低密度脂蛋白、高密度脂蛋白、甲状旁腺素、维生素D、血钙、血磷、血钾、铁蛋白、总铁蛋白结合力、C反应蛋白、β2微球蛋白等。
1.2.3 人体测量学指标:
由经过营养科医师专门培训的同一研究人员在患者透析1 h后测量身高、体质量、肱三头肌皮褶厚度(TSF)、上臂围(MAC)、上臂肌围(MAMC)等。TSF测量: 受试者自然站立,检查者左手拇指和食指、中指将受试者上臂背侧肩峰到尺骨鹰嘴连线中点处皮肤提起,使用按压式皮脂钳脂肪夹测量其厚度,测量3次取平均值。MAC测量: 患者非内瘘手自然下垂,软尺绕患者上臂尺骨鹰嘴到肩峰连线中点处1周测量周长,测量3次取平均值。MAMC计算: MAMC(cm)=MAC(cm)-0.314×TSF(cm)。
1.2.4 肌肉质量及功能检测:
透析后1 h采用生物电阻抗技法(人体成分分析仪InBodyS10型)检测并记录人体成分学指标,包括肌肉组织指数(LTI)、脂肪组织指数(FTI)、体内水分总量(TBW)、细胞外水分(ECW)、细胞内水分(ICW)、肌肉组织量(LTM)、脂质量(FAT)、脂肪组织量(FTM)、身体细胞质量(BCM)、体质量指数(BMI)、体脂百分比(PBF)、去脂体质量(FFM)等。肌肉力量检测: 透析前由同一名医务人员使用CAMRY EH101电子握力器(广东香山集团)进行握力测量,每次间隔2 min, 单手测量2次,取最大值。躯体功能检测: 嘱患者在不使用辅助行走工具的条件下,以正常的步速行走,并用AP-7001秒表(广州)记录其所用时间,检测2次,记录其平均值(m/s), 以此评估患者的身体活动能力。
1.3 肌少症诊断标准
参考2019年AWGS的诊断标准: ①骨骼肌质量指数(SMI)为男性 < 7.0 kg/m2, 女性 < 5.7 kg/m2; ②握力为男性 < 28 kg, 女性 < 18 kg; ③ 6 m步速 < 1.0 m/s。在符合上述诊断标准①且合并②和(或)③的条件下,可诊断肌少症。
1.4 统计学分析
采用SPSS 22.0统计软件对数据进行分析。符合正态分布的计量资料以均数±标准差表示; 非正态分布的计量资料以[M(P25, P75)]表示,组间比较采用Mann Whitney U检验; 计数资料以[n(%)]表示,组间比较采用χ2检验。采用单因素二元Logistic回归分析探讨ESRD行MHD患者肌少症发生的影响因素。采用Spearman法分析参数间相关性,采用受试者工作特征(ROC)曲线分析参数的诊断效能。P < 0.05为差异有统计学意义。
2. 结果
2.1 肌少症发生情况及一般资料比较
本研究共纳入197例行MHD的ESRD患者,其中男90例(45.69%), 女107例(54.31%)。根据肌少症诊断标准,共有72例患者被诊断为肌少症,肌少症发生率为36.55%, 其中女28例,男44例。肌少症组与非肌少症组在年龄、性别、透析龄、合并高血压方面比较,差异有统计学意义(P < 0.05)。见表 1。
表 1 肌少症组与非肌少症组一般资料比较[M(P25, P75)][n(%)]一般资料 分类 肌少症组(n=72) 非肌少症组(n=125) Z/χ2 P 年龄/岁 64.50(53.25, 71.75) 58.00(43.50, 68.00) -2.005 0.045 性别 男 44(61.11) 46(36.80) 10.882 0.001 女 28(38.89) 79(63.20) 透析龄/月 39.00(21.00, 83.00) 30.00(16.00, 55.00) -2.176 0.030 合并糖尿病 是 33(45.83) 59(47.20) 0.034 0.853 否 39(54.17) 66(52.80) 合并高血压 是 62(86.11) 120(96.00) 6.351 0.012 否 10(13.89) 5(4.00) 合并继发性甲状旁腺功能亢进 是 33(45.83) 59(47.20) 0.166 0.683 否 39(54.17) 66(52.80) 透析方式 血液透析 51(70.83) 80(64.00) 0.958 0.328 血液透析滤过 21(29.17) 45(36.00) 2.2 人体学测量指标及人体成分比较
与非肌少症组相比, 肌少症组BMI、TSF、握力、FFM、LTI、TWB、ICW、LTM、FAT、BCM值更低,差异有统计学意义(P < 0.05), 见表 2。
表 2 肌少症组与非肌少症组人体学测量指标及人体成分比较(x±s)[M(P25, P75)]指标 肌少症组(n=72) 非肌少症组(n=125) Z/t P 上臂围/cm 23.55(22.00, 25.00) 25.00(23.00, 27.00) -3.493 0.060 肱三头肌皮褶厚度/mm 8.00(6.00, 10.00) 10.00(7.00, 15.00) -3.313 0.001 上臂肌围/cm 20.86(18.80, 22.59) 21.43(19.72, 23.30) 1.723 0.005 握力/kg 19.75(12.95, 23.50) 28.10(19.85, 37.40) -6.000 < 0.001 肌肉组织指数/(kg/m2) 14.48±2.58 16.27±2.94 -4.284 < 0.001 脂肪组织指数/(kg/m2) 6.90±3.41 7.34±3.95 -0.791 0.430 体内水分总量/L 30.35(26.30, 34.17) 35.10(31.25, 39.10) -5.386 < 0.001 细胞外水分/L 12.85(11.40, 14.42) 15.20(13.05, 16.70) -4.931 < 0.001 细胞内水分/L 17.18±3.31 20.11±3.75 -5.495 < 0.001 肌肉组织量/L 37.10±8.40 44.27±9.23 -5.419 < 0.001 脂质量/% 12.75(8.12, 17.47) 13.70(8.70, 19.70) -1.094 0.274 脂肪组织量/% 17.35(11.02, 23.95) 18.90(12.10, 27.45) -1.346 0.178 身体细胞质量/kg 20.86±5.76 25.55±6.38 -5.137 < 0.001 体质量指数/(kg/m2) 21.35(19.22, 23.84) 25.50(21.15, 25.65) -4.176 < 0.001 去脂体质量/kg 38.55(32.80, 43.27) 46.40(40.60, 52.30) -6.462 < 0.001 体脂百分比/% 27.36±9.58 26.63±9.42 0.517 0.606 2.3 血液检测指标比较
肌少症组与非肌少症组患者在肌酐、甘油三酯、高密度脂蛋白、β2微球蛋白方面比较,差异均有统计学意义(P < 0.05), 见表 3。
表 3 肌少症组与非肌少症组血液检测指标比较(x±s)[M(P25, P75)]指标 肌少症组(n=72) 非肌少症组(n=125) Z/t P 肌酐/(μmol/L) 811.90±252.23 913.06±289.45 -2.473 0.014 尿素/(mmol/L) 19.18(14.54, 25.40) 19.64(16.10, 24.26) -1.560 0.876 尿酸/(μmol/L) 423.05(335.25, 497.07) 426.00(365.95, 504.20) -1.203 0.229 血钙/(mmol/L) 2.26(2.12, 2.40) 2.21(2.08, 2.34) -1.430 0.152 血钠/(mmol/L) 139.37(137.53, 141.03) 139.64(137.06, 141.05) -0.084 0.933 血钾/(mmol/L) 4.38(3.98, 4.99) 4.54(4.19, 5.06) -1.195 0.051 血磷/(mmol/L) 1.72±0.60 1.77±0.52 -0.607 0.544 甘油三酯/(mmol/L) 1.79(1.18, 2.76) 2.24(1.35, 3.37) -2.085 0.037 高密度脂蛋白/(mmol/L) 1.01(0.85, 2.76) 0.92(0.76, 1.12) -2.046 0.041 低密度脂蛋白/(mmol/L) 2.09±0.81 2.14±0.80 -0.476 0.634 白细胞/(×109/L) 6.32±1.73 6.49±1.92 -0.594 0.553 甲状旁腺素/(pg/mL) 206.75(115.00, 338.92) 239.30(124.45, 371.55) -0.599 0.549 维生素D/μg 30.00(19.72, 35.55) 28.10(19.04, 37.17) -0.452 0.652 铁蛋白/(ng/mL) 183.70(74.51, 324.62) 143.40(68.15, 345.65) -0.097 0.922 总铁蛋白结合力/(μmol/L) 45.07(39.87, 52.35) 46.09(40.83, 53.48) -0.576 0.565 血白蛋白/(g/L) 42.45(39.31, 44.67) 41.90(39.81, 43.67) -0.795 0.426 红细胞/(×1012/L) 3.83±0.71 3.70±0.65 1.320 0.188 血红蛋白/(g/L) 116.37±20.49 111.84±16.33 1.704 0.090 血小板/(×109/L) 175.50(140.75, 220.75) 190.00(155.00, 222.50) -1.131 0.258 C反应蛋白/(mg/L) 4.08(1.25, 12.11) 2.82(0.89, 5.82) -1.959 0.050 β2微球蛋白/(mg/L) 39.11±11.64 34.73±11.68 2.535 0.012 2.4 ESRD行MHD患者肌少症发病危险因素的单因素二元Logistic回归分析
以组间比较中有统计学意义的因素(年龄、性别、透析龄、合并高血压、BMI、TSF、肌肉力量、LTI、TWB、ICW、LTM、FAT、BCM、FFM、肌酐、β2微球蛋白、甘油三酯、高密度脂蛋白)为自变量,以发生肌少症作为因变量,并将本研究中差异无统计学意义但考虑既往研究表示是肌少症的影响因素的指标(甲状旁腺素、维生素D、铁蛋白结合力、C反应蛋白、上臂肌围、合并糖尿病)纳入Logistic回归分析中。
自变量赋值: 性别(男=1, 女=0); 合并高血压(是=1, 否=0); 合并糖尿病(是=1, 否=0); 连续变量均以原值录入。单因素二元Logistic回归分析结果显示,高龄(OR=1.048, P=0.040, 95%CI: 1.021~1.078)、男性(OR=0.371, P=0.001, 95%CI: 0.204~0.673)、握力(OR=0.838, P < 0.001, 95%CI: 0.764~0.920)、FFM(OR=0.634, P < 0.001, 95%CI: 0.527~0.761)是ESRD行MHD患者肌少症发生的影响因素,且男性、高龄与肌少症发生呈正相关,握力、FFM与肌少症发生呈负相关。见表 4。
表 4 ESRD行MHD患者肌少症影响因素的单因素二元Logistic回归分析因素 β SE Wald χ2 OR P 95%CI 性别 -0.993 0.305 10.670 0.371 0.001 0.204~0.673 透析龄 0.010 0.006 2.645 1.010 0.104 0.998~1.002 年龄 0.047 0.023 4.224 1.048 0.040 1.021~1.078 肌酐 -0.001 0.001 0.330 0.999 0.566 0.997~1.002 甘油三酯 -0.355 0.198 3.219 0.701 0.073 0.476~1.033 高密度脂蛋白 -0.892 1.002 0.792 0.410 0.373 0.058~2.921 甲状旁腺素 -0.001 0.001 0.469 0.999 0.493 0.997~1.001 维生素D -0.006 0.007 0.736 0.994 0.391 0.981~1.007 铁蛋白结合力 -0.003 0.027 1.086 0.972 0.297 0.921~1.025 C反应蛋白 0.044 0.025 2.979 1.044 0.084 0.994~1.097 β2微球蛋白 0.043 0.027 2.542 1.044 0.111 0.990~1.100 上臂周径 0.044 0.058 0.571 1.045 0.450 0.933~1.170 握力 -0.176 0.047 13.828 0.838 < 0.001 0.764~0.920 肌肉组织指数 -0.211 0.272 0.601 0.810 0.438 0.475~1.380 细胞内水分 0.129 0.323 0.160 1.138 0.689 0.604~2.145 肌肉组织量 0.039 0.122 0.101 1.039 0.751 0.818~1.320 身体细胞质量 -0.085 0.141 0.362 0.919 0.547 0.697~1.211 体质量指数 -0.010 0.024 0.188 0.990 0.665 0.945~1.037 去脂体质量 -0.456 0.094 23.815 0.634 < 0.001 0.527~0.761 体脂百分比 -0.010 0.034 0.080 0.990 0.777 0.926~1.059 高血压 -0.745 1.409 0.282 0.473 0.595 0.030~7.490 糖尿病 0.715 0.611 1.366 2.043 0.242 0.617~6.771 2.5 ESRD行MHD肌少症发生相关影响因素与SMI、握力及6 m步速的相关性
对SMI、握力、6 m步速行Spearman相关性分析,结果显示,年龄与SMI、6 m步速无相关性(P>0.05), 年龄与握力呈负相关(r=-0.283, P < 0.001); 握力与6m步行速度无相关性(P > 0.05), 但握力与SMI呈正相关(r=0.455, P < 0.001); FFM与SMI、握力呈正相关(r=0.904、0.499, P < 0.001), FFM与6 m步行速度呈负相关(r=-0.245, P=0.001)。见表 5、图 1。
表 5 相关危险因素与SMI、握力、6 m步速的相关性分析因素 SMI 握力 6 m步速 年龄 r -0.134 -0.283 0.339 P 0.060 < 0.001 0.051 握力 r 0.455 — -0.485 P < 0.001 — 0.053 FFM r 0.904 0.499 -0.245 P < 0.001 < 0.001 0.001 SMI: 骨骼肌质量指数; FFM: 去脂体质量。 2.6 影响因素对诊断ESRD行MHD肌少症的预测效能比较
性别诊断肌少症的曲线下面积(AUC)为0.622(95%CI: 0.540~0.703), 截断值为男性,灵敏度为61.11%, 特异度为63.20%; 年龄诊断肌少症的AUC为0.586(95%CI: 0.503~0.669), 截断值59.5岁,灵敏度为62.50%, 特异度为54.40%; 握力诊断肌少症的AUC为0.757(95%CI: 0.692~0.822), 截断值为27.75 kg, 灵敏度为97.22%, 特异度为54.40%; FFM诊断肌少症的AUC为0.777(95%CI: 0.714~0.840), 截断值为45.05 kg, 灵敏度为86.11%, 特异度为58.40%; 多指标联合诊断肌少症的AUC为0.817(95%CI: 0.759~0.875), 灵敏度为100.00%, 特异度为64.00%。见图 2。
3. 讨论
对于ESRD行MHD患者而言,随着肾功能进行性恶化及透析时间延长,尿毒症引起的感染、体内酸碱平衡失调、厌食症、贫血、透析相关骨病、激素紊乱等并发症可导致蛋白质吸收受损和肌肉萎缩加重,导致肌少症在该类人群中发生率可达49.4%[9-10]。本研究纳入的197例患者中,参照2019年AWGS的诊断标准,共有72例患者诊断为肌少症,发病率为36.55%, 与何莉等[11]通过Meta分析得到的亚洲地区MHD患者肌少症患病率相当。
本研究中,高龄、男性与ESRD行MHD患者肌少症发生呈正相关,与其他研究[12-13]结果相符。分析原因为: 随着患者年龄的增加,其体内肌蛋白分解与合成代谢的平衡逐渐失衡, α运动神经元加速退化,且肌纤维逐渐从Ⅱ型转化为Ⅰ型,同时骨骼肌质量明显降低,使得患者平衡能力及运动功能下降,从而导致肌少症在高龄患者中更容易发生[14]。此外,伴随年龄的增加,患者机体也会发生显著改变,例如激素、代谢、免疫因子、基因代谢等因素会对肌肉质量和肌肉力量产生影响,且肌肉力量的衰减早于肌肉质量的衰减[15-16]。本研究发现高龄与握力呈负相关,这也验证了年龄增长可对肌肉力量产生影响。有研究[17]显示年龄所诱导的激素变化、线粒体功能障碍等也参与肌少症的发生。
本研究中,男性肌少症的发病率高于女性,这与相关研究[18-19]结果相符。但也有研究[20]显示不同性别患者的肌少症发生情况无显著差异。分析原因可能与ESRD患者的性激素水平有关,此类患者往往存在性腺功能减退,体内睾酮缺乏,导致促进黄体生成素信号传导受阻及催乳素清除下降[21]; 当睾酮缺乏时,可导致肌生成素过度表达,造成肌肉蛋白负平衡[22]。研究[23-24]证实,厌食症与肌少症的发生存在相关性,相较于女性而言,男性更容易发生炎症介导的厌食症。持续的炎症状态不仅影响食欲,导致营养摄入减少,还会通过刺激泛素-蛋白酶体途径的活化,诱导线粒体动力学的改变,抑制肌肉的修复和再生,导致肌少症的发生[25]。
本研究中,握力、FFM与ESRD行MHD患者肌少症发生呈负相关。分析原因为ESRD行MHD患者受特殊的饮食限制、食欲减退、慢性炎症状态、机体代谢紊乱、氧化应激等因素影响,易发生营养不良。研究[26]表明,营养状况与握力可相互影响,握力可反映患者的营养和骨骼肌肉状况,即营养不良患者的握力水平差、体质量过低,其罹患肌少症风险增大[27]。孟宇等[28]研究证实FFM值可反映MHD患者的营养状态和炎症反应状态,即FFM值与营养状态呈正相关,与炎症指标呈负相关。慢性微炎症状态会导致患者罹患肌少症的风险增加,其可能与长期透析过程中免疫力低下、导管相关性感染、营养不良所致炎症有关; 同时,慢性微炎症状态还会影响患者食欲,导致机体营养摄入不足。戴祺洁等[29]研究证实,机体蛋白质含量与肌少症发生呈负相关。故临床上应加强ESRD行MHD患者营养充足的宣教,必要时可给予特殊营养制剂,以降低患者感染的风险。
综上所述,肌少症在ESRD行MHD患者中发病率较高,高龄、男性、握力、FFM是ESRD行MHD患者发生肌少症的影响因素。FFM可预测ESRD行MHD患者肌少症的发生概率,联合性别、年龄、握力的预测效能更高。改善营养状态及微炎症状态可以预防或减少ESRD行MHD患者肌少症的发生。
-
[1] LOPRINZI C L, LACCHETTI C, BLEEKER J, et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: ASCO guideline update[J]. J Clin Oncol, 2020, 38(28): 3325-3348. doi: 10.1200/JCO.20.01399
[2] TIMMINS H C, MIZRAHI D, LI T, et al. Metabolic and lifestyle risk factors for chemotherapy-induced peripheral neuropathy in taxane and platinum-treated patients: a systematic review[J]. J Cancer Surviv, 2021.
[3] SELVY M, PEREIRA B, KERCKHOVE N, et al. Long-term prevalence of sensory chemotherapy-induced peripheral neuropathy for 5 years after adjuvant FOLFOX chemotherapy to treat colorectal cancer: amulticenter cross-sectional study[J]. J Clin Med, 2020, 9(8): 2400. doi: 10.3390/jcm9082400
[4] BONHOF C S, VAN DE POLL-FRANSE L V, VISSERS P A J, et al. Anxiety and depression mediate the association between chemotherapy-induced peripheral neuropathy and fatigue: results from the population-based PROFILES registry[J]. Psycho-oncology, 2019, 28(9): 1926-1933. doi: 10.1002/pon.5176
[5] BULLS H W, HOOGLAND A I, SMALL B J, et al. Lagged relationships among chemotherapy-induced peripheral neuropathy, sleep quality, and physical activity during and after chemotherapy[J]. Ann Behav Med, 2021, 55(9): 844-852. doi: 10.1093/abm/kaaa101
[6] TROMPETTER H R, BONHOF C S, VANDE POLL-FRANSE L V, et al. Exploring the relationship among dispositional optimism, health-related quality of life, and CIPN severity among colorectal cancer patients with chronic peripheral neuropathy[J]. Support Care Cancer, 2022, 30(1): 95-104. doi: 10.1007/s00520-021-06352-0
[7] ROY C. Extending the Roy adaptation model to meet changing global needs[J]. Nurs Sci Q, 2011, 24(4): 345-351. doi: 10.1177/0894318411419210
[8] 姚静静, 陈如男, 刘砚燕, 等. 癌症患者心理社会适应水平及其影响因素[J]. 解放军护理杂志, 2013, 30(7): 7-11, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-JFHL201307004.htm [9] DE RIDDER D, GEENEN R, KUIJER R, et al. Psychological adjustment to chronic disease[J]. Lancet, 2008, 372(9634): 246-255. doi: 10.1016/S0140-6736(08)61078-8
[10] DEROGATIS L R. The psychosocial adjustment to illness scale (PAIS)[J]. J Psychosom Res, 1986, 30(1): 77-91. doi: 10.1016/0022-3999(86)90069-3
[11] 姚静静. 癌症患者适应水平的横断面调查及其预测因素分析[D]. 上海: 第二军医大学, 2013. [12] TANAY M A, ARMES J. Lived experiences and support needs of women who developed chemotherapy-induced peripheral neuropathy following treatment for breast and ovarian cancer[J]. Eur J Cancer Care (Engl), 2019, 28(3): e13011.
[13] CHAN C W, CHENG H L, AU S K, et al. Living with chemotherapy-induced peripheral neuropathy: Uncovering the symptom experience and self-management of neuropathic symptoms among cancer survivors[J]. Eur J Oncol Nurs, 2018, 36: 135-141. doi: 10.1016/j.ejon.2018.09.003
[14] ZHI W I, BASER R E, KWON A, et al. Characterization of chemotherapy-induced peripheral neuropathy using patient-reported outcomes and quantitative sensory testing[J]. Breast Cancer Res Treat, 2021, 186(3): 761-768. doi: 10.1007/s10549-020-06079-2
[15] TAN A C, MCCRARY J M, PARK S B, et al. Chemotherapy-induced peripheral neuropathy-patient-reported outcomes compared with NCI-CTCAE grade[J]. Support Care Cancer, 2019, 27(12): 4771-4777. doi: 10.1007/s00520-019-04781-6
[16] CAVALETTI G, FRIGENI B, LANZANI F, et al. Chemotherapy-Induced Peripheral Neurotoxicity assessment: a critical revision of the currently available tools[J]. Eur J Cancer, 2010, 46(3): 479-494. doi: 10.1016/j.ejca.2009.12.008
[17] CORNBLATH D R, CHAUDHRY V, CARTER K, et al. Total neuropathy score: validation and reliability study[J]. Neurology, 1999, 53(8): 1660-1664. doi: 10.1212/WNL.53.8.1660
[18] CALHOUN E A, WELSHMAN E E, CHANG C H, et al. Psychometric evaluation of the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity (Fact/GOG-Ntx) questionnaire for patients receiving systemic chemotherapy[J]. Int J Gynecol Cancer, 2003, 13(6): 741-748.
[19] POSTMA T J, AARONSON N K, HEIMANS J J, et al. The development of an EORTC quality of life questionnaire to assess chemotherapy-induced peripheral neuropathy: the QLQ-CIPN20[J]. Eur J Cancer, 2005, 41(8): 1135-1139. doi: 10.1016/j.ejca.2005.02.012
[20] MONFORT S M, PAN X L, PATRICK R, et al. Gait, balance, and patient-reported outcomes during taxane-based chemotherapy in early-stage breast cancer patients[J]. Breast Cancer Res Treat, 2017, 164(1): 69-77. doi: 10.1007/s10549-017-4230-8
[21] WONG M L, COOPER B A, PAUL S M, et al. Age-related differences in patient-reported and objective measures of chemotherapy-induced peripheral neuropathy among cancer survivors[J]. Support Care Cancer, 2019, 27(10): 3905-3912. doi: 10.1007/s00520-019-04695-3
[22] DROTT J, STARKHAMMAR H, KJELLGREN K, et al. Neurotoxic side effects early in the oxaliplatin treatment period in patients with colorectal cancer[J]. Oncol Nurs Forum, 2018, 45(6): 690-697.
[23] GROVER S, HILL-KAYSER C E, VACHANI C, et al. Patient reported late effects of gynecological cancer treatment[J]. Gynecol Oncol, 2012, 124(3): 399-403. doi: 10.1016/j.ygyno.2011.11.034
[24] HUNG H W, LIU C Y, CHEN H F, et al. Impact of chemotherapy-induced peripheral neuropathy on quality of life in patients with advanced lung cancer receiving platinum-based chemotherapy[J]. Int J Environ Res Public Health, 2021, 18(11): 5677. doi: 10.3390/ijerph18115677
[25] LU L C, TSAY S L, CHANG S Y, et al. Daily activity, mood, and quality of life in colorectal cancer patients with chemotherapy-induced peripheral neuropathy: a mediation effect analysis[J]. Cancer Med, 2019, 8(3): 963-971. doi: 10.1002/cam4.1976
[26] SIMON N B, DANSO M A, ALBERICO T A, et al. The prevalence and pattern of chemotherapy-induced peripheral neuropathy among women with breast cancer receiving care in a large community oncology practice[J]. Qual Life Res, 2017, 26(10): 2763-2772. doi: 10.1007/s11136-017-1635-0
[27] TRENDOWSKI M R, LUSK C M, RUTERBUSCH J J, et al. Chemotherapy-induced peripheral neuropathy in African American cancer survivors: risk factors and quality of life outcomes[J]. Cancer Med, 2021, 10(22): 8151-8161. doi: 10.1002/cam4.4328
[28] ZHONG J, GUO Z H, FAN L P, et al. ABCB1 polymorphism predicts the toxicity and clinical outcome of lung cancer patients with taxane-based chemotherapy[J]. Thorac Cancer, 2019, 10(11): 2088-2095. doi: 10.1111/1759-7714.13184
[29] MCNEISH B L, RICHARDSON J K, BELL S G, et al. Chemotherapy-induced peripheral neuropathy increases nontraumatic fracture risk in breast cancer survivors[J]. JBMR Plus, 2021, 5(8): e10519.
[30] BONHOF C S, TROMPETTER H R, VREUGDENHIL G, et al. Painful and non-painful chemotherapy-induced peripheral neuropathy and quality of life in colorectal cancer survivors: results from the population-based PROFILES registry[J]. Support Care Cancer, 2020, 28(12): 5933-5941. doi: 10.1007/s00520-020-05438-5
[31] BATTAGLINI E, GOLDSTEIN D, GRIMISON P, et al. Chemotherapy-induced peripheral neurotoxicity in cancer survivors: predictors of long-term patient outcomes[J]. J Natl ComprCancNetw, 2021, 19(7): 821-828.
[32] COX-MARTIN E, TRAHAN L H, COX M G, et al. Disease burden and pain in obese cancer patients with chemotherapy-induced peripheral neuropathy[J]. Support Care Cancer, 2017, 25(6): 1873-1879. doi: 10.1007/s00520-017-3571-5
[33] GOMEZ D, JIMENEZ-FONSECA P, FERNÁNDEZ A M, et al. Impact of obesity on quality of life, psychological distress, and coping on patients with colon cancer[J]. Oncologist, 2021, 26(5): e874-e882. doi: 10.1002/onco.13687
[34] KANZAWA-LEE G A, LARSON J L, RESNICOW K, et al. Exercise effects on chemotherapy-induced peripheral neuropathy: acomprehensive integrative review[J]. Cancer Nurs, 2020, 43(3): E172-E185. doi: 10.1097/NCC.0000000000000801
[35] WILCOXON A, KOBERK M, VIELE C, et al. Association between physical activity levels and chemotherapy-induced peripheral neuropathy severity in cancer survivors[J]. Oncol Nurs Forum, 2020, 47(6): 703-719. doi: 10.1188/20.ONF.703-719
[36] GREENLEE H, HERSHMAN D L, SHI Z X, et al. BMI, lifestyle factors and taxane-induced neuropathy in breast cancer patients: the pathways study[J]. J Natl Cancer Inst, 2016, 109(2): djw206.
[37] KLECKNER I R, JUSKO T A, CULAKOVA E, et al. Longitudinal study of inflammatory, behavioral, clinical, and psychosocial risk factors for chemotherapy-induced peripheral neuropathy[J]. Breast Cancer Res Treat, 2021, 189(2): 521-532. doi: 10.1007/s10549-021-06304-6
[38] RO S M, WOO I S. Long-term efficacy and safety of duloxetine in the management of painful chemotherapy induced peripheral neuropathy[J]. J Clin Oncol, 2017, 35(31_suppl): 236. doi: 10.1200/JCO.2017.35.31_suppl.236
[39] MIASKOWSKI C, PAUL S M, MASTICK J, et al. Associations between perceived stress and chemotherapy-induced peripheral neuropathy and otoxicity in adult cancer survivors[J]. J Pain Symptom Manage, 2018, 56(1): 88-97. doi: 10.1016/j.jpainsymman.2018.02.021
[40] POULIN P A, ROMANOW H C, RAHBARI N, et al. The relationship between mindfulness, pain intensity, pain catastrophizing, depression, and quality of life among cancer survivors living with chronic neuropathic pain[J]. SupportCare Cancer, 2016, 24(10): 4167-4175.
[41] LEE K M, JUNG D, HWANG H, et al. Pre-treatment anxiety is associated with persistent chemotherapy-induced peripheral neuropathy in women treated with neoadjuvant chemotherapy for breast cancer[J]. J Psychosom Res, 2018, 108: 14-19. doi: 10.1016/j.jpsychores.2018.02.012
[42] KOLB N A, SMITH A G, SINGLETON J R, et al. Chemotherapy-related neuropathic symptom management: a randomized trial of an automated symptom-monitoring system paired with nurse practitioner follow-up[J]. Support Care Cancer, 2018, 26(5): 1607-1615. doi: 10.1007/s00520-017-3970-7
[43] KNOERL R, WELLER E, HALPENNY B, et al. Exploring the efficacy of an electronic symptom assessment and self-care intervention to preserve physical function in individuals receiving neurotoxic chemotherapy[J]. BMC Cancer, 2018, 18(1): 1203. doi: 10.1186/s12885-018-5093-z
[44] DROTT J, STARKHAMMAR H, KJELLGREN K, et al. The trajectory of neurotoxic side effects' impact on daily life: a qualitative study[J]. Support Care Cancer, 2016, 24(8): 3455-3461. doi: 10.1007/s00520-016-3179-1
[45] 李玉梅, 黄瑛, 张燕, 等. 肺癌患者对化疗致周围神经炎症状心理体验的质性研究[J]. 上海护理, 2018, 18(5): 36-39. doi: 10.3969/j.issn.1009-8399.2018.05.009 [46] SALGADO T M, QUINN C S, KRUMBACH E K, et al. Reporting of paclitaxel-induced peripheral neuropathy symptoms to clinicians among women with breast cancer: a qualitative study[J]. Support Care Cancer, 2020, 28(9): 4163-4172. doi: 10.1007/s00520-019-05254-6
[47] GALANTINO M L, TIGER R, BROOKS J, et al. Impact of somatic Yoga and meditation on fall risk, function, and quality of life for chemotherapy-induced peripheral neuropathy syndrome in cancer survivors[J]. Integr Cancer Ther, 2019, 18: 1534735419850627.
[48] KNOERL R, SMITH E M L, BARTON D L, et al. Self-guided online cognitive behavioral strategies for chemotherapy-induced peripheral neuropathy: amulticenter, pilot, randomized, wait-list controlled trial[J]. J Pain, 2018, 19(4): 382-394. doi: 10.1016/j.jpain.2017.11.009
[49] DHAWAN S, ANDREWS R, KUMAR L, et al. A randomized controlled trial to assess the effectiveness of muscle strengthening and balancing exercises on chemotherapy-induced peripheral neuropathic pain and quality of life among cancer patients[J]. Cancer Nurs, 2020, 43(4): 269-280. doi: 10.1097/NCC.0000000000000693
[50] BLAND K A, KIRKHAM A A, BOVARD J, et al. Effect of exercise on taxanechemotherapy-induced peripheral neuropathy in women with breast cancer: arandomized controlled trial[J]. Clin Breast Cancer, 2019, 19(6): 411-422. doi: 10.1016/j.clbc.2019.05.013
[51] HAN X Y, WANG L J, SHI H F, et al. Acupuncture combined with methylcobalamin for the treatment of chemotherapy-induced peripheral neuropathy in patients with multiple myeloma[J]. BMC Cancer, 2017, 17(1): 40. doi: 10.1186/s12885-016-3037-z
[52] IRAVANI S, KAZEMI MOTLAGH A H, EMAMI RAZAVI S Z, et al. Effectiveness of acupuncture treatment on chemotherapy-induced peripheral neuropathy: apilot, randomized, Assessor-blinded, controlled trial[J]. Pain Res Manag, 2020, 2020: 2504674.
-
期刊类型引用(11)
1. 陆飞,袁卫东,范亚平. 维持性血液透析患者肌少症风险预测模型的构建与验证. 中国血液净化. 2025(03): 198-202 . 百度学术
2. 唐月红,游靓,彭瑛. 地中海饮食模式联合渐进式抗阻及有氧训练对老年肌少症患者躯体功能、肌肉力量、营养水平的影响. 中国当代医药. 2025(04): 170-173 . 百度学术
3. 杨婷婷,李建锋. 维持性血液透析患者肌少症患病情况及相关因素分析. 延边大学医学学报. 2025(02): 92-95 . 百度学术
4. 李远远,陈劲,郁秀娟,熊凌杰,刘丹丹. 高龄住院失能患者失能程度的影响因素及失能与营养不良、肌少症的相关性分析. 实用临床医药杂志. 2024(07): 67-71 . 本站查看
5. 游睿,曹正江,汤曦,周莉. 维持性血液透析合并肌少症患者临床治疗及营养干预现状. 中国医药. 2024(07): 1113-1116 . 百度学术
6. 范慧,任直亲,张海杰. 老年糖尿病肾病患者透析相关肌少症的危险因素分析与预后观察. 老年医学与保健. 2024(04): 1084-1088+1093 . 百度学术
7. 王雨涛,柳娟. 慢性肾脏病患者血清IL-6、Cys C、TNF-α与肌肉减少症的关系及对患者死亡风险的影响. 昆明医科大学学报. 2024(10): 85-90 . 百度学术
8. 庞婷,吴伟莉,杨斌姣. 维持性血液透析患者导管相关感染的病原菌情况、危险因素与预测模型构建. 实用临床医药杂志. 2024(21): 60-65 . 本站查看
9. 李培芳,叶婷,王殿尹. 尿毒清颗粒联合复方α-酮酸对维持性血液透析肾脏病患者Kt/V、URR及微炎症状态的影响. 临床合理用药. 2024(34): 114-116 . 百度学术
10. 张阳凡,张敏. 终末期肾病维持性血液透析患者感染结核分枝杆菌情况及其危险因素分析. 中国国境卫生检疫杂志. 2024(06): 600-603 . 百度学术
11. 李梅莹,张斯萍. 基于ORTCC模型联合抗阻训练对维持性血液透析肌少症患者握力、依从性和步速的影响. 河北医药. 2024(24): 3745-3749 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 256
- HTML全文浏览量: 139
- PDF下载量: 22
- 被引次数: 11