Research progress of immune checkpoint inhibitors based biotherapeutics in epidermal growth factor receptor mutant of non-small cell lung cancer
-
摘要: 对于表皮生长因子受体(EGFR)突变的患者,EGFR酪氨酸激酶抑制剂(EGFR-TKI)继发性耐药是不可避免的。免疫检查点抑制剂(ICIs)是目前癌症治疗的主要手段,包括抗程序性细胞死亡受体-1(PD-1)、程序性细胞死亡配体-1(PD-L1)和细胞毒性T淋巴细胞相关蛋白4(CTLA-4)的单克隆抗体,可显著改善非小细胞肺癌(NSCLC)患者的生存和生活质量。但携带EGFR突变的NSCLC患者对于ICIs反应较差。研究表明EGFR信号通路可能影响抗肿瘤免疫反应和肿瘤免疫微环境。本文就EGFR信号通路在肿瘤免疫微环境中对抗肿瘤免疫应答的影响、相关预后指标、EGFR突变患者的免疫治疗现状及目前的临床研究进行综述。
-
关键词:
- 程序性细胞死亡受体-1 /
- 肿瘤微环境 /
- 免疫治疗 /
- 抗血管生成 /
- 表皮生长因子受体突变 /
- 非小细胞肺癌
Abstract: In patients with epidermal growth factor receptor (EGFR) mutation, secondary resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI) is inevitable. Immune checkpoint inhibitors (ICIs) are currently the mainstay of cancer therapy, including monoclonal antibodies against programmed cell death 1 (PD-1), programmed cell death ligand-1 (PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which can significantly improve survival and quality of life in patients with non-small cell lung cancer (NSCLC). However, NSCLC patients with EGFR mutations have a poor response to ICIs. Studies have shown that EGFR signaling pathway may influence anti-tumor immune response and tumor immune microenvironment. This paper reviewed the effects of EGFR signaling pathway on tumor immune response in tumor immune microenvironment, related prognostic indicators, current status of immunotherapy for patients with EGFR mutation and current clinical studies. -
慢性阻塞性肺疾病(COPD)是临床常见的肺部疾病,其发病率与病死率在全球范围内逐渐递增[1-2]。COPD急性加重期(AECOPD)会引发Ⅱ型呼吸衰竭,与患者肺功能进一步下降及较高的病死率密切相关[3-4]。如何减轻AECOPD合并Ⅱ型呼吸衰竭患者的临床症状、改善其预后,是临床重点关注的问题。目前,在常规对症治疗的基础上联合应用无创机械通气仍是临床治疗AECOPD合并Ⅱ型呼吸衰竭的常见手段,而无创机械通气中不同吸入氧浓度对患者的临床疗效有所差异,有关吸入氧的适宜浓度仍存在争议[5]。血清高迁移率族蛋白B1(HMGB1)、白细胞介素-27(IL-27)在机体炎症反应的发生发展中发挥重要作用,其中HMGB1可在炎症条件下与晚期糖基化终产物受体、Toll样受体结合,启动多条信号通路,放大炎症效应; IL-27表达可诱导CD4+ T细胞增殖,促进多种炎症因子的合成分泌,加重炎症反应,其水平变化与COPD合并Ⅱ型呼吸衰竭患者的病情严重程度、预后密切相关[6-7]。本研究对比了无创机械通气中应用不同吸入氧浓度治疗对AECOPD合并Ⅱ型呼吸衰竭患者的血气指标、血清HMGB1、IL-27水平的影响,旨在为临床选择无创机械通气中合适的吸入氧浓度提供参考。
1. 资料与方法
1.1 一般资料
选取2020年1月—2022年12月于本院接受无创机械通气治疗的158例AECOPD合并Ⅱ型呼吸衰竭患者为研究对象,依据随机数字表法分为A组(无创机械通气中吸入氧浓度为45%, n=80)和B组(无创机械通气中吸入氧浓度为60%, n=78)。纳入标准: ①诊断符合AECOPD、Ⅱ型呼吸衰竭的诊断标准[8]者; ②均接受无创机械通气治疗者; ③患者性别不限,年龄≥18岁; ④患者知情同意。排除标准: ①既往存在家庭呼吸机使用史患者; ②合并其他类型肺部疾病患者; ③存在口咽部创伤或手术史患者; ④需立即气管插管治疗患者。治疗期间, A组1例患者死亡, 2例患者进入ICU, 1例患者未完成治疗周期脱落; B组2例患者进入ICU。最终纳入统计学分析患者152例, A组、B组各为76例。本研究经医院伦理委员会批准, 2组患者一般临床资料比较,差异无统计学意义(P>0.05)。见表 1。
表 1 2组患者一般临床资料比较(x±s)[n(%)]指标 A组(n=76) B组(n=76) t/χ2 P 性别 男 39(51.32) 34(44.74) 0.659 0.417 女 37(48.68) 42(55.26) 年龄/岁 57.81±6.29 56.92±5.17 0.953 0.342 体质量指数/(kg/m2) 23.47±1.29 23.86±1.61 1.648 0.101 基础疾病 糖尿病 23(30.26) 20(26.32) 0.292 0.589 高血压 26(34.21) 22(28.95) 0.487 0.485 吸烟史 37(48.68) 34(44.74) 0.238 0.626 COPD病程/年 3.62±1.37 3.27±1.26 1.2 方法
所有患者入院后均接受止咳化痰、抗炎、抗感染、纠正电解质紊乱等常规对症治疗。沙美特罗替卡松粉吸入剂(舒利迭; 规格: 每揿含沙美特罗25 μg和丙酸氟替卡松250 μg; 注册证号: H20140404; 法国Glaxo Wellcome Production公司), 1吸/次, 2次/d, 连续使用7 d。采用VPAPIII ST-A with QuickNav无创机械通气系统(瑞思迈医疗器械有限公司)行无创机械通气治疗,采用鼻导管或面罩连接呼吸机,通气模式为S/T模式,参数设置: 呼吸频率12~16次/min, 氧流量4~5 L/min, 初始治疗时吸气相正压(IPAP)10 cmH2O, 呼气末正压(EPAP)4 cmH2O, 待患者适应后,调整IPAP为10~20 cmH2O, EPAP为5~10 cmH2O; 1~3次/d, 每次通气3~4 h, 日通气时间≥8 h。A组患者吸入氧浓度为45%, B组患者吸入氧浓度为60%, 2组患者均连续治疗7 d。
1.3 观察指标
① 血气指标: 分别于治疗前及治疗后1、7 d取患者股动脉血5 mL, 采用全自动血气分析仪(cobas-b-123型,瑞士罗氏公司)检测患者动脉血氧分压[pa(O2)]、动脉血二氧化碳分压[pa(CO2)]和pH值。②血清HMGB1、IL-27水平检测: 分别于治疗前和治疗后1、7 d取患者空腹肘静脉血5 mL, 采用酶联免疫吸附法检测血清HMGB1、IL-27水平。③并发症: 记录患者治疗期间并发症的发生情况。
1.4 统计学分析
采用SPSS 23.0软件进行数据分析。计量资料以(x±s)表示,组间比较行t检验,组内不同时间点比较行重复测量方差分析; 计数资料以[n(%)]表示,行χ2检验或Fisher精确概率检验。检验水准α=0.05, P < 0.05表示差异有统计学意义。
2. 结果
2.1 2组患者治疗前后血气指标比较
治疗7 d后, A组pa(O2)、pH值水平高于B组, pa(CO2)水平低于B组,差异有统计学意义(P < 0.05)。见表 2。
表 2 2组患者治疗前后血气指标比较(x±s)指标 时点 A组(n=76) B组(n=76) pa(O2)/mmHg 治疗前 53.28±7.52 54.91±6.68 治疗1 d后 67.24±8.85 65.92±9.03 治疗7 d后 95.13±8.27* 82.49±9.35 pa(CO2)/mmHg 治疗前 68.27±8.54 69.63±7.48 治疗1 d后 53.48±6.65 55.29±7.23 治疗7 d后 39.79±5.28* 47.31±7.15 pH值 治疗前 7.23±0.11 7.20±0.15 治疗1 d后 7.36±0.12 7.33±0.09 治疗7 d后 7.39±0.05* 7.34±0.07 pa(O2): 动脉血氧分压; pa(CO2): 动脉血二氧化碳分压。与B组比较, * P < 0.05。 2.2 2组患者治疗前后血清HMGB1水平比较
治疗1、7 d后, A组血清HMGB1水平低于B组,差异有统计学意义(P < 0.05)。见表 3。
表 3 2组患者治疗前后血清HMGB1水平比较(x±s)μg/L 组别 高迁移率族蛋白B1 治疗前 治疗1 d后 治疗7 d后 A组(n=76) 4.08±1.13 3.25±0.79* 2.14±0.95* B组(n=76) 4.12±1.09 3.69±1.03 2.67±0.84 与B组比较, * P < 0.05。 2.3 2组患者治疗前后血清IL-27水平比较
治疗1、7 d后, A组血清IL-27水平低于B组,差异有统计学意义(P < 0.05)。见表 4。
表 4 2组患者治疗前后血清IL-27水平比较(x±s)ng/L 组别 白细胞介素-27 治疗前 治疗1 d后 治疗7 d后 A组(n=76) 187.24±39.26 125.31±20.81* 75.49±19.48* B组(n=76) 183.57±41.22 157.25±19.62 102.64±15.53 与B组比较, * P < 0.05。 2.4 2组并发症发生情况比较
治疗期间, 2组患者并发症总发生率比较,差异无统计学意义(P>0.05)。见表 5。
表 5 2组患者并发症发生情况比较[n(%)]组别 口咽干燥 鼻压伤 胃肠胀气 一过性低氧血症 合计 A组(n=76) 3(3.95) 2(2.63) 1(1.32) 0 6(7.89) B组(n=76) 1(1.32) 2(2.63) 1(1.32) 1(1.32) 5(6.58) 3. 讨论
AECOPD患者往往存在反复发作的低氧血症,会使肺小动脉痉挛,血流阻力增加,导致肺动脉血管重塑; 同时,随着肺功能的降低,患者呼吸肌收缩能力下降,易造成二氧化碳潴留,最终引发Ⅱ型呼吸衰竭,进一步增加患者的病死率。无创机械通气可通过减轻气流阻塞、增加动脉血氧饱和度来达到改善通气、缓解呼吸肌疲劳、减轻临床症状的效果。既往临床无创机械通气中多采用高浓度氧吸入治疗,以迅速改善低氧血症。但有研究[9]发现,过量吸入氧会增加呼吸中枢麻痹与继发性肺损伤的风险。无创机械通气中采用何种浓度的吸入氧治疗,尚需进一步研究。
本研究对比了无创机械通气中应用不同吸入氧浓度对AECOPD合并Ⅱ型呼吸衰竭患者血气指标及血清HMGB1、IL-27水平的影响。HMGB1是调节机体氧化应激及炎症反应的重要非组蛋白,具有启动并维持肺泡上皮细胞瀑布式炎症级联反应的作用,其水平变化与机体炎症反应的发生发展关系密切[10]。本研究发现,治疗1、7 d后, A组血清HMGB1水平显著低于B组,提示在无创机械通气中应用45%吸入氧浓度,可降低AECOPD合并Ⅱ型呼吸衰竭患者血清HMGB1水平,有利于患者机体炎症反应的控制。分析其原因可能是: 无创机械通气可改善患者气道通气状态,在降低气道阻力及患者呼吸肌做功的同时,提高肺泡换气功能,从而改善呼吸状态,减轻肺损伤; 但吸入氧浓度会对肺功能产生一定影响,浓度越高,肺部炎症反应越重,单核细胞合成分泌大量肿瘤坏死因子-α、白细胞介素-6等炎症因子,最终导致血清HMGB1水平升高[11]。
IL-27是由抗原呈递细胞分泌的细胞因子,可介导并激活多种信号级联反应,参与机体Th1细胞免疫应答,促进肿瘤坏死因子-α、干扰素-γ等细胞因子的合成与分泌[12]。一项有关血清IL-27水平与COPD合并Ⅱ型呼吸衰竭关系的分析研究[13]发现, COPD合并Ⅱ型呼吸衰竭患者的血清IL-27水平较单纯COPD患者、健康者显著升高,并与患者肺功能以及病情严重程度相关,认为IL-27参与气道炎症反应。本研究发现,治疗1、7 d后, A组血清IL-27水平显著低于B组,提示在无创机械通气中应用45%吸入氧浓度,可降低AECOPD合并Ⅱ型呼吸衰竭患者的血清IL-27水平,促进患者康复。高吸入氧浓度会诱导血管内皮生长因子信号通路改变,导致肺泡上皮细胞死亡,加重肺部炎症反应,使细胞炎症因子水平显著升高; 而高水平的细胞炎症因子会反过来促进IL-27的合成与分泌,使其水平显著升高[14]。
本研究结果显示,治疗7 d后, A组pa(O2)、pH值水平显著高于B组, pa(CO2)水平显著低于B组,提示采用45%吸入氧浓度的无创机械通气能更好地纠正AECOPD合并Ⅱ型呼吸衰竭患者的缺氧状态,改善其血气指标。COPD患者由于长期处于低氧状态,机体已具备低氧适应性,完全适应当前的低氧状态; 当吸入高浓度、高流量氧气时,可能会破坏机体的低氧适应性“稳态”,加重肺部炎症反应,不利于因呼吸衰竭造成的缺氧状态的改善[15]。研究[5]发现,与60%吸入氧浓度相比,在无创机械通气中应用45%吸入氧浓度能显著改善老年COPD合并呼吸衰竭患者的血氧指标和呼吸状况,并认为45%吸入氧浓度更符合患者机体状态,有利于相关组织正常生理功能的维护。本研究中,2组患者的并发症发生率无显著差异,进一步表明2种吸入氧浓度的安全性相当。但本研究为单中心临床试验,纳入样本量较少,后续研究拟扩大样本量,进一步多角度研究不同吸入氧浓度对AECOPD患者合并Ⅱ型呼吸衰竭的疗效,并对研究结果进行验证。
综上所述,与60%吸入氧浓度相比, AECOPD合并Ⅱ型呼吸衰竭患者接受吸入氧浓度为45%的无创机械通气治疗可获得更好的临床效果,患者血气指标改善效果更好,血清HMGB1、IL-27水平下降更显著,安全性较高。
-
[1] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. doi: 10.3322/caac.21654
[2] SHI Y K, AU J S K, THONGPRASERT S, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER)[J]. J Thorac Oncol, 2014, 9(2): 154-162. doi: 10.1097/JTO.0000000000000033
[3] WU Y L, SAIJO N, THONGPRASERT S, et al. Efficacy according to blind independent central review: post-hoc analyses from the phase Ⅲ, randomized, multicenter, IPASS study of first-line gefitinib versus carboplatin/paclitaxel in Asian patients with EGFR mutation-positive advanced NSCLC[J]. Lung Cancer, 2017, 104: 119-125. doi: 10.1016/j.lungcan.2016.11.022
[4] HERBST R S, GARON E B, KIM D W, et al. Five year survival update from KEYNOTE-010: pembrolizumab versus docetaxel for previously treated, programmed death-ligand 1-positive advanced NSCLC[J]. J Thorac Oncol, 2021, 16(10): 1718-1732. doi: 10.1016/j.jtho.2021.05.001
[5] ETTINGER D S, WOOD D E, AISNER D L, et al. NCCN guidelines insights: non-small cell lung cancer, version 2. 2021[J]. J Natl Compr Canc Netw, 2021, 19(3): 254-266. doi: 10.6004/jnccn.2021.0013
[6] DONG R F, ZHU M L, LIU M M, et al. EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: from molecular mechanisms to clinical research[J]. Pharmacol Res, 2021, 167: 105583. doi: 10.1016/j.phrs.2021.105583
[7] ABIKO K, MATSUMURA N, HAMANISHI J, et al. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer[J]. Br J Cancer, 2015, 112(9): 1501-1509. doi: 10.1038/bjc.2015.101
[8] GARCIA-DIAZ A, SHIN D S, MORENO B H, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression[J]. Cell Rep, 2017, 19(6): 1189-1201. doi: 10.1016/j.celrep.2017.04.031
[9] JAIN R K. Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers[J]. J Clin Oncol, 2013, 31(17): 2205-2218. doi: 10.1200/JCO.2012.46.3653
[10] ROCHE P A, FURUTA K. The ins and outs of MHC class Ⅱ-mediated antigen processing and presentation[J]. Nat Rev Immunol, 2015, 15(4): 203-216. doi: 10.1038/nri3818
[11] LIN K L, CHENG J N, YANG T, et al. EGFR-TKI down-regulates PD-L1 in EGFR mutant NSCLC through inhibiting NF-κb[J]. Biochem Biophys Res Commun, 2015, 463(1/2): 95-101.
[12] SPRAGUE L, MUCCIOLI M, PATE M, et al. The interplay between surfaces and soluble factors define the immunologic and angiogenic properties of myeloid dendritic cells[J]. BMC Immunol, 2011, 12: 35. doi: 10.1186/1471-2172-12-35
[13] KUMAGAI S, KOYAMA S, NISHIKAWA H. Antitumour immunity regulated by aberrant ERBB family signalling[J]. Nat Rev Cancer, 2021, 21(3): 181-197. doi: 10.1038/s41568-020-00322-0
[14] YU S R, SHA H H, QIN X B, et al. EGFR E746-A750 deletion in lung cancer represses antitumor immunity through the exosome-mediated inhibition of dendritic cells[J]. Oncogene, 2020, 39(13): 2643-2657. doi: 10.1038/s41388-020-1182-y
[15] LIU S Y, DONG Z Y, WU S P, et al. Clinical relevance of PD-L1 expression and CD8+ T cells infiltration in patients with EGFR-mutated and ALK-rearranged lung cancer[J]. Lung Cancer, 2018, 125: 86-92. doi: 10.1016/j.lungcan.2018.09.010
[16] ZHAO C, SU C X, LI X F, et al. Association of CD8 T cell apoptosis and EGFR mutation in non-small lung cancer patients[J]. Thorac Cancer, 2020, 11(8): 2130-2136. doi: 10.1111/1759-7714.13504
[17] AKBAY E A, KOYAMA S, CARRETERO J, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors[J]. Cancer Discov, 2013, 3(12): 1355-1363. doi: 10.1158/2159-8290.CD-13-0310
[18] ZHU G S, LI Y W, SHI R F, et al. Immune microenvironment comparation study between EGFR mutant and EGFR wild type lung adenocarcinoma patients based on TCGA database[J]. Zhongguo Fei Ai Za Zhi, 2021, 24(4): 236-244.
[19] XIE X B, GHADIMI M P H, YOUNG E D, et al. Combining EGFR and mTOR blockade for the treatment of epithelioid sarcoma[J]. Clin Cancer Res, 2011, 17(18): 5901-5912. doi: 10.1158/1078-0432.CCR-11-0660
[20] FENG P H, YU C T, CHEN K Y, et al. S100A9+ MDSC and TAM-mediated EGFR-TKI resistance in lung adenocarcinoma: the role of RELB[J]. Oncotarget, 2018, 9(7): 7631-7643. doi: 10.18632/oncotarget.24146
[21] BULE P, AGUIAR S I, AIRES-DA-SILVA F, et al. Chemokine-directed tumor microenvironment modulation in cancer immunotherapy[J]. Int J Mol Sci, 2021, 22(18): 9804. doi: 10.3390/ijms22189804
[22] AHMED S, MOHAMED H T, EL-HUSSEINY N, et al. IL-8 secreted by tumor associated macrophages contribute to lapatinib resistance in HER2-positive locally advanced breast cancer via activation of Src/STAT3/ERK1/2-mediated EGFR signaling[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(6): 118995. doi: 10.1016/j.bbamcr.2021.118995
[23] PEI B X, SUN B S, ZHANG Y, et al. Expression of colony-stimulating factor 1 in lung adenocarcinoma and its prognostic implication[J]. Zhonghua Zhong Liu Za Zhi, 2015, 37(2): 113-118.
[24] CEKIC C, DAY Y J, SAG D, et al. Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment[J]. Cancer Res, 2014, 74(24): 7250-7259. doi: 10.1158/0008-5472.CAN-13-3583
[25] SUGIYAMA E, TOGASHI Y, TAKEUCHI Y, et al. Blockade of EGFR improves responsiveness to PD-1 blockade in EGFR-mutated non-small cell lung cancer[J]. Sci Immunol, 2020, 5(43): eaav3937. doi: 10.1126/sciimmunol.aav3937
[26] 张奥伦, 殷婷, 张西志. 肿瘤突变负荷对结直肠癌患者免疫治疗疗效的预测价值[J]. 实用临床医药杂志, 2020, 24(8): 128-132. doi: 10.7619/jcmp.202008035 [27] YOH K, MATSUMOTO S, FURUYA N, et al. Comprehensive assessment of PD-L1 expression, tumor mutational burden and oncogenic driver alterations in non-small cell lung cancer patients treated with immune checkpoint inhibitors[J]. Lung Cancer, 2021, 159: 128-134. doi: 10.1016/j.lungcan.2021.07.015
[28] DONG Z Y, ZHANG J T, LIU S Y, et al. EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer[J]. Oncoimmunology, 2017, 6(11): e1356145. doi: 10.1080/2162402X.2017.1356145
[29] LI T, PANG X C, WANG J Y, et al. Exploration of the tumor-suppressive immune microenvironment by integrated analysis in EGFR-mutant lung adenocarcinoma[J]. Front Oncol, 2021, 11: 591922. doi: 10.3389/fonc.2021.591922
[30] LI L, LI M Y, WANG X S. Cancer type-dependent correlations between TP53 mutations and antitumor immunity[J]. DNA Repair (Amst), 2020, 88: 102785. doi: 10.1016/j.dnarep.2020.102785
[31] XIE F T, XU M X, LU J, et al. The role of exosomal PD-L1 in tumor progression and immunotherapy[J]. Mol Cancer, 2019, 18(1): 146. doi: 10.1186/s12943-019-1074-3
[32] LEE B S, PARK D I, LEE D H, et al. Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma[J]. Biochem Biophys Res Commun, 2017, 491(2): 493-499. doi: 10.1016/j.bbrc.2017.07.007
[33] D'INCECCO A, ANDREOZZI M, LUDOVINI V, et al. PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients[J]. Br J Cancer, 2015, 112(1): 95-102. doi: 10.1038/bjc.2014.555
[34] SONG P, WU S F, ZHANG L, et al. Correlation between PD-L1 expression and clinicopathologic features in 404 patients with lung adenocarcinoma[J]. Interdiscip Sci, 2019, 11(2): 258-265. doi: 10.1007/s12539-019-00329-8
[35] PENG S L, WANG R, ZHANG X J, et al. EGFR-TKI resistance promotes immune escape in lung cancer via increased PD-L1 expression[J]. Mol Cancer, 2019, 18(1): 165. doi: 10.1186/s12943-019-1073-4
[36] HSU K H, HUANG Y H, TSENG J S, et al. High PD-L1 expression correlates with primary resistance to EGFR-TKIs in treatment naÏve advanced EGFR-mutant lung adenocarcinoma patients[J]. Lung Cancer, 2019, 127: 37-43. doi: 10.1016/j.lungcan.2018.11.021
[37] GAINOR J F, SHAW A T, SEQUIST L V, et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis[J]. Clin Cancer Res, 2016, 22(18): 4585-4593. doi: 10.1158/1078-0432.CCR-15-3101
[38] MAZIERES J, DRILON A, LUSQUE A, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry[J]. Ann Oncol, 2019, 30(8): 1321-1328. doi: 10.1093/annonc/mdz167
[39] LEE C K, MAN J, LORD S, et al. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer-A meta-analysis[J]. J Thorac Oncol, 2017, 12(2): 403-407. doi: 10.1016/j.jtho.2016.10.007
[40] JIA Y J, LI X F, JIANG T, et al. EGFR-targeted therapy alters the tumor microenvironment in EGFR-driven lung tumors: implications for combination therapies[J]. Int J Cancer, 2019, 145(5): 1432-1444. doi: 10.1002/ijc.32191
[41] YANG J C H, GADGEEL S M, SEQUIST L V, et al. Pembrolizumab in combination with erlotinib or gefitinib as first-line therapy for advanced NSCLC with sensitizing EGFR mutation[J]. J Thorac Oncol, 2019, 14(3): 553-559. doi: 10.1016/j.jtho.2018.11.028
[42] CREELAN B C, YEH T C, KIM S W, et al. A Phase 1 study of gefitinib combined with durvalumab in EGFR TKI-naive patients with EGFR mutation-positive locally advanced/metastatic non-small-cell lung cancer[J]. Br J Cancer, 2021, 124(2): 383-390. doi: 10.1038/s41416-020-01099-7
[43] HELLMANN M D, RIZVI N A, GOLDMAN J W, et al. Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study[J]. Lancet Oncol, 2017, 18(1): 31-41. doi: 10.1016/S1470-2045(16)30624-6
[44] JIANG T, WANG P Y, ZHANG J, et al. Toripalimab plus chemotherapy as second-line treatment in previously EGFR-TKI treated patients with EGFR-mutant-advanced NSCLC: a multicenter phase-Ⅱ trial[J]. Signal Transduct Target Ther, 2021, 6(1): 355. doi: 10.1038/s41392-021-00751-9
[45] LIU S T, WU F Y, LI X F, et al. Patients with short PFS to EGFR-TKIs predicted better response to subsequent anti-PD-1/PD-L1 based immunotherapy in EGFR common mutation NSCLC[J]. Front Oncol, 2021, 11: 639947. doi: 10.3389/fonc.2021.639947
[46] NOGAMI N, BARLESI F, SOCINSKI M A, et al. IMpower150 final exploratory analyses for atezolizumab plus bevacizumab and chemotherapy in key NSCLC patient subgroups with EGFR mutations or metastases in the liver or brain[J]. J Thorac Oncol, 2022, 17(2): 309-323. doi: 10.1016/j.jtho.2021.09.014
[47] PARK K, VANSTEENKISTE J, LEE K H, et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with locally-advanced unresectable non-small-cell lung cancer: a KSMO-ESMO initiative endorsed by CSCO, ISMPO, JSMO, MOS, SSO and TOS[J]. Ann Oncol, 2020, 31(2): 191-201. doi: 10.1016/j.annonc.2019.10.026
[48] CHENG L, CREASY T, PILATAXI F, et al. Effects of combination treatment with durvalumab plus tremelimumab on the tumor microenvironment in non-small-cell lung carcinoma[J]. Cancer Immunology, Immunotherapy, 2021: 1-15.
[49] CUMMINGS A L, SANTOSO K M, GOLDMAN J W. KEYNOTE-021 cohorts D and H suggest modest benefit in combining ipilimumab with pembrolizumab in second-line or later advanced non-small cell lung cancer treatment[J]. Transl Lung Cancer Res, 2019, 8(5): 706-709. doi: 10.21037/tlcr.2019.08.11
[50] BORGHAEI H, GETTINGER S, VOKES E E, et al. Five-Year Outcomes From the Randomized, Phase Ⅲ Trials CheckMate 017 and 057: Nivolumab Versus Docetaxel in Previously Treated Non-Small-Cell Lung Cancer[J]. Journal of Clinical Oncology, 2021, 39(7): 723-733. doi: 10.1200/JCO.20.01605
-
期刊类型引用(3)
1. 赵茜. 老年呼吸衰竭患者机械通气期间发生呼吸机相关性肺炎的影响因素. 中国民康医学. 2025(04): 12-15+19 . 百度学术
2. 龙茵,朱水泉,伍桂雄,梁紫沙. 平喘调中针刺法联合无创通气治疗慢性阻塞性肺疾病急性加重期合并Ⅱ型呼吸衰竭患者的效果及对肺功能的改善作用. 现代医学与健康研究电子杂志. 2024(12): 82-84 . 百度学术
3. 温文乐,齐亚伟,杨敬雅,毋娜,何博,金文霞. 尼可刹米注射液联合无创正压通气辅助治疗AECOPD并呼吸衰竭的临床观察. 实用中西医结合临床. 2024(13): 46-49 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 336
- HTML全文浏览量: 155
- PDF下载量: 21
- 被引次数: 5