Efficacy comparison of different nutrition management schemes for premature infants after hospital discharge
-
摘要:目的 比较早产儿出院后不同营养管理方案的效果。方法 前瞻性选取2019年7月—2020年6月出生胎龄 < 34周且出生体质量 < 1 800 g的出院后早产儿为研究对象, 分为定期随访的个体化营养组和未定期随访的常规营养组。比较2组出院后早产儿基本资料、不同年龄体格生长状态及校正年龄1岁时神经心理发育商(DQ)。结果 本研究共纳入出院后早产儿114例,其中个体化营养组65例,常规营养组49例。2组早产儿性别、出生胎龄、体质量、身长、头围、居住环境、监护人学历等比较,差异无统计学意义(P>0.05)。个体化营养组早产儿校正月龄1、3、6、12个月时的年龄别体质量Z值(WAZ)、年龄别身长Z值(LAZ)、身长别体质量Z值(WLZ)、年龄别头围Z值(HCZ)均高于常规营养组,差异有统计学意义(P < 0.05)。个体化营养组早产儿校正年龄1岁时的神经系统适应性、大动作、精细动作、语言、个人社交的DQ高于常规组,差异有统计学意义(P < 0.05)。结论 早产儿出院后实施个体化营养管理有利于其出院后追赶性生长,降低后期神经发育不良风险。Abstract:Objective To compare the efficacy of different nutrition management schemes in treatment of premature infants after hospital discharge.Methods Premature infants with gestational age < 34 weeks and birth weight < 1 800 g after hospital discharge from July 2019 to June 2020 were prospectively selected as research objects, and they were divided into individualized nutrition group with regular follow up and routine nutrition group without regular follow up. The general data, physical growth status at different ages and neuropsychological development quotient (DQ) at the corrected age of 1 year were compared between the two groups after hospital discharge.Results A total of 114 premature infants after hospital discharge were included in this study, including 65 cases in the individualized nutrition group and 49 cases in the routine nutrition group. There were no significant differences in gender, gestational age, body mass, body length, head circumference, living environment and guardian's education level between the two groups (P>0.05). The weight-for-age Z value (WAZ), length-for-age Z value (LAZ), weight-for-length Z value (WLZ) and head circumference-for-age Z value (HCZ) of premature infants in the individualized nutrition group were significantly higher than those in the routine nutrition group at 1 month, 3, 6 and 12 months of corrected month age (P < 0.05). The DQ of adaptability, big movement, fine movement, language and personal social interaction of nervous system in premature infants of the individualized nutrition group were significantly higher than those in the routine nutrition group at 1 year old of corrected age (P < 0.05).Conclusion Individualized nutritional management for premature infants after hospital discharge is conducive to achieve catch-up growth and reduce the risk of neurodysplasia in later stage.
-
急性心力衰竭(AHF)为临床较常见的心脏急症,心力衰竭急性发作或持续加重引发心脏负荷增大、收缩力下降、急性心排量骤降等临床综合征,严重者还可出现急性肺水肿、急性肾衰竭、心源性休克等情况。尽管AHF的药物和非药物治疗方法已取得较大进展,但患者预后仍较差[1], 这可能因为诱因存在多样性和病理机制尚未完全明确。研究[2-3]证实,心肌氧化应激时形成的过量氧自由基与心血管疾病尤其是AHF的发生发展密切相关。胰岛素样生长因子结合蛋白-7(IGFBP-7)可存在于血管内皮细胞的Weibel Palade小体上[4], 能促使血管内皮细胞产生活性氧(ROS), 加重心肌细胞氧化损伤和衰老,参与射血分数保留型心力衰竭的发生发展[5]。沉默信息调节因子4(SIRT4)是一种主要存在于线粒体中的NAD+依赖性蛋白质脱酰酶,除参与线粒体功能调节外,还参与机体炎症反应和氧化应激反应等过程[6]。LUO Y X等[7]发现, SIRT4可通过升高小鼠体内ROS水平,加速血管紧张素(AngⅡ)诱导的病理性心肌肥大,提示SIRT4可能与AHF的发生发展及预后有关。本研究探讨AHF患者血清IGFBP-7、SIRT4表达水平变化情况及其与预后的关系,以期改善AHF的治疗效果,现报告如下。
1. 资料与方法
1.1 一般资料
选取2021年4月—2023年1月廊坊市中医医院收治的151例AHF患者纳入AHF组。纳入标准: ①符合《中国急性心力衰竭急诊临床实践指南(2017)》[8]中AHF诊断标准者; ②首次发病,纽约心脏病协会(NYHA)分级≥2级者; ③发病后24 h内入院者; ④知晓研究内容,配合治疗,签署知情同意书者。排除标准: ①入院后24 h死亡者; ②合并严重肝、肾、肺疾病者; ③合并其他心血管疾病者; ④合并自身免疫系统疾病或恶性肿瘤者。按照1∶1比例另选取151例同期同年龄段健康体检者纳入对照组,体检者均身体健康。对照组男84例,女67例; 年龄53~80岁,平均(64.30±5.23)岁; 体质量指数(BMI)18~38 kg/m2, 平均(22.83±2.59) kg/m2; 舒张压66~98 mmHg, 平均(77.81±5.81) mmHg; 收缩压93~162 mmHg, 平均(119.46±13.15) mmHg; 低密度脂蛋白胆固醇(LDL-C)1.55~3.24 mmol/L, 平均(2.44±0.40) mmol/L; 有饮酒史37例,有吸烟史49例。AHF组男89例,女62例; 年龄53~79岁,平均(64.99±5.65)岁; BMI 18~38 kg/m2, 平均(23.13±3.17) kg/m2; 舒张压65~98 mmHg, 平均(78.12±7.20) mmHg; 收缩压93~165 mmHg, 平均(120.39±12.66) mmHg; LDL-C 1.49~3.66 mmol/L, 平均(2.46±0.44) mmol/L; 有饮酒史35例,有吸烟史52例; 病情严重程度分级[8]为Ⅱ级49例、Ⅲ级79例、Ⅳ级23例。2组研究对象的基线资料比较,差异无统计学意义(P>0.05)。本研究经医院医学伦理委员会审核批准(批号2022-1102-01)。
1.2 研究方法
采集对照组(体检当日)和AHF组(入院次日)研究对象晨起空腹肘静脉血样3 mL, 3 000转/min离心10 min后,分离血清, -80 ℃冷冻保存。采用酶联免疫吸附法检测2组血清IGFBP-7、SIRT4、N-末端钠尿肽前体(NT-proBNP)和ROS水平,检测试剂盒购自研生生物科技有限公司,所用仪器为BioTek Synergy H1多功能酶标仪。
1.3 观察指标
① 比较对照组和AHF组血清IGFBP-7、SIRT4、NT-proBNP、ROS水平。②比较AHF组不同病情患者的血清IGFBP-7、SIRT4、NT-proBNP和ROS水平。③对AHF组患者进行为期12个月的随访,记录患者不良心血管事件发生情况,包括复发性心绞痛、再发心力衰竭、心肌梗死、心源性死亡等,并据此将患者分为预后良好者和预后不良者。④比较不同预后患者的性别、年龄、BMI、血压、LDL-C、饮酒史、吸烟史、病情分级和血清IGFBP-7、SIRT4、NT-proBNP、ROS水平。
1.4 统计学分析
采用SPSS 25.0统计学软件分析数据。计数资料和等级资料均以[n(%)]表示,组间分析分别采用χ2检验和秩和检验。符合正态分布的计量资料以(x±s)描述, 2组间比较采用t检验,多组间比较采用单因素方差分析; 不符合正态分布的计量资料以[M(P25, P75)]描述,比较采用Mann-whitney U检验。相关性分析采用Pearson相关系数法; 影响因素分析采用多因素Logistic回归分析法; 预测效能采用受试者工作特征(ROC)曲线评估,效能比较行Z检验。P < 0.05为差异有统计学意义。
2. 结果
2.1 2组血清IGFBP-7、SIRT4、NT-proBNP和ROS水平比较
AHF组血清IGFBP-7、SIRT4、NT-proBNP和ROS表达水平均高于对照组,差异有统计学意义(P < 0.05), 见表 1。
表 1 2组血清IGFBP-7、SIRT4、NT-proBNP和ROS水平比较(x±s)[M(P25, P75)]组别 n IGFBP-7/(μg/L) SIRT4/(nU/mL) NT-proBNP/(ng/L) ROS/(ng/mL) 对照组 151 50.11±12.86 30.93±9.27 206.01(157.69, 239.64) 13.83±3.10 AHF组 151 135.60±35.23* 75.23±20.92* 2 698.91(1 487.28, 4 192.45)* 30.86±9.02* IGFBP-7: 胰岛素样生长因子结合蛋白-7; SIRT4: 沉默信息调节因子4; NT-proBNP: N-末端钠尿肽前体; ROS: 活性氧。
与对照组比较, *P < 0.05。2.2 不同病情分级AHF患者血清IGFBP-7、SIRT4、NT-proBNP和ROS水平比较
AHF组患者中,病情分级Ⅳ级者血清IGFBP-7、SIRT4、NT-proBNP和ROS水平高于Ⅲ级者和Ⅱ级者,Ⅲ级者血清IGFBP-7、SIRT4、NT-proBNP和ROS水平高于Ⅱ级者,差异有统计学意义(P < 0.05), 见表 2。
表 2 不同病情分级患者血清IGFBP-7、SIRT4、NT-proBNP和ROS水平比较(x±s)[M(P25, P75)]病情分级 n IGFBP-7/(μg/L) SIRT4/(nU/mL) NT-proBNP/(ng/L) ROS/(ng/mL) Ⅱ级 49 107.80±35.44 57.66±12.53 1 266.79(772.82, 2 027.66) 23.13±6.50 Ⅲ级 79 141.18±22.74* 77.50±16.05* 3 047.13(1 896.74, 4 131.54)* 31.88±5.92* Ⅳ级 23 175.71±14.67*# 104.34±12.05*# 5 535.59(4 578.72, 6 461.09)*# 43.79±5.09*# 与Ⅱ级比较, *P < 0.05; 与Ⅲ级比较, #P < 0.05。 2.3 不同预后AHF患者基本资料、血清指标表达水平比较
截至随访结束, 48例AHF患者预后不良(31.79%), 其中复发性心绞痛18例(37.50%)、心力衰竭14例(29.17%)、心肌梗死12例(25.00%)、心源性死亡4例(8.33%)。预后不良者在性别、年龄、BMI、舒张压、收缩压、LDL-C、饮酒史、吸烟史方面与预后良好者比较,差异均无统计学意义(P>0.05), 但预后不良者病情分级和血清IGFBP-7、SIRT4、NT-proBNP、ROS表达水平均高于预后良好者,差异有统计学意义(P < 0.05), 见表 3。
表 3 不同预后AHF患者基本资料、血清指标表达水平比较[n(%)](x±s)[M(P25, P75)]指标 预后良好者(n=103) 预后不良者(n=48) χ2/t/Z P 性别 男 57(55.34) 32(66.67) 1.736 0.188 女 46(44.66) 16(33.33) 年龄/岁 64.44±5.40 66.17±6.02 1.765 0.080 体质量指数/(kg/m2) 23.23±2.65 22.92±4.10 0.570 0.570 舒张压/mmHg 77.50±6.83 79.46±7.84 1.569 0.119 收缩压/mmHg 119.30±13.56 122.73±10.20 1.569 0.119 低密度脂蛋白胆固醇/(mmol/L) 2.42±0.44 2.55±0.44 1.726 0.086 饮酒史 22(21.36) 13(27.08) 0.602 0.438 吸烟史 31(30.10) 21(43.75) 2.703 0.100 病情分级 Ⅱ级 41(39.81) 8(16.67) 18.961 < 0.001 Ⅲ级 54(52.43) 25(52.08) Ⅳ级 8(7.77) 15(31.25) 胰岛素样生长因子结合蛋白-7/(μg/L) 124.63±34.91 159.16±22.01 6.288 < 0.001 沉默信息调节因子4/(nU/mL) 68.28±17.78 89.87±19.57 6.727 < 0.001 N-末端钠尿肽前体/(ng/L) 2 106.30(1 207.98, 3 178.20) 4 474.21(2 810.11, 5 476.59) 5.918 < 0.001 活性氧/(ng/mL) 27.95±7.41 37.09±9.06 6.567 < 0.001 2.4 AHF患者血清IGFBP-7、SIRT4与NT-proBNP、ROS的相关性分析
相关性分析结果显示, AHF患者血清IGFBP-7、SIRT4水平均分别与血清NT-proBNP、ROS水平呈正相关(r=0.523、0.498、0.578、0.557, P < 0.05), 见图 1。
2.5 AHF患者预后的影响因素分析
以患者预后为因变量(预后良好=0,预后不良=1), 以病情分级和血清IGFBP-7、SIRT4、NT-proBNP、ROS水平为自变量(病情分级赋值: Ⅱ级=0, Ⅲ级=1, Ⅳ级=2; IGFBP-7、SIRT4、NT-proBNP、ROS分别原值代入),进行多因素Logistic回归分析。分析结果显示,病情分级和血清IGFBP-7、SIRT4、NT-proBNP、ROS水平均为AHF患者预后的独立影响因素(P < 0.05), 见表 4。
表 4 AHF患者预后影响因素的多因素Logistic回归分析结果因素 β SE Wald χ2 P OR(95%CI) 病情分级 0.371 0.166 4.995 0.026 1.449(1.174~3.692) 胰岛素样生长因子结合蛋白-7 0.285 0.121 5.548 0.019 1.328(1.136~5.041) 沉默信息调节因子4 0.329 0.159 4.282 0.038 1.390(1.215~5.732) N-末端钠尿肽前体 0.221 0.110 4.036 0.041 1.247(1.086~3.119) 活性氧 0.432 0.183 5.573 0.019 1.540(1.352~7.415) 2.6 血清IGFBP-7、SIRT4对AHF患者预后不良的预测效能
ROC曲线分析结果显示,血清IGFBP-7、SIRT4、ROS对AHF患者预后不良均具有一定预测价值,曲线下面积(AUC)分别为0.794、0.795、0.778, 且血清IGFBP-7、SIRT4、ROS联合预测AHF患者预后不良的AUC大于单独检测(Z=2.590、2.432、2.563, P < 0.05), 见表 5、图 2。
表 5 血清IGFBP-7、SIRT4、ROS对AHF患者预后不良的预测效能指标 敏感度 特异度 最佳截断值 P AUC(95%CI) 胰岛素样生长因子结合蛋白-7/(μg/L) 0.688 0.786 149.09 < 0.001 0.794(0.722~0.864) 沉默信息调节因子4/(nU/mL) 0.792 0.641 73.94 < 0.001 0.795(0.720~0.871) 活性氧/(ng/mL) 0.667 0.816 35.77 < 0.001 0.778(0.692~0.865) 三者联合 0.917 0.864 — < 0.001 0.909(0.858~0.959) 3. 讨论
研究[9-10]证实,心肌组织氧化应激与心力衰竭的发生发展密切相关,但具体作用机制目前尚未明确。氧自由基可通过直接损伤心肌细胞及其超微结构造成心肌损伤,或通过调控细胞信号转导通路,启动心肌细胞凋亡,减少心肌细胞数目,导致心肌纤维化和心室重构,进而引发心力衰竭[2]。
IGFBP-7属于胰岛素样生长因子结合蛋白家族成员,可与胰岛素样生长因子(IGF)结合,拮抗其与相应受体结合,从而参与细胞增殖、衰老、凋亡等生理过程[11]。人类心肌细胞转录组和血浆蛋白质组综合分析[12]表明, IGFBP-7属于降解转化生长因子-β(TGF-β)下游细胞因子,可由衰竭的心肌细胞分泌,通过HtrA丝氨酸肽酶3(Htra3)-TGF-β-IGFBP-7途径调节心肌细胞稳态和心脏纤维化。BARROSO M C等[13]研究发现, IGFBP-7在健康体检者、无症状左室舒张功能不全者、射血分数保留型心力衰竭(HFpEF)患者体内的表达水平呈显著升高趋势,且IGFBP-7表达水平升高可能反映舒张功能恶化、心脏代谢紊乱和结构不良等。HAGE C等[5]研究显示, IGFBP-7可能通过炎症和氧化应激反应促进心力衰竭的发生发展, HFpEF者体内IGFBP-7轻微上调表达,且其表达水平与心脏舒张功能障碍、心力衰竭病情严重程度和预后均显著相关; IGFBP-7在射血分数降低的心力衰竭患者体内显著升高,且其表达水平与病情严重程度有关,但与患者预后无关。SIRT4属于Ⅱ型Sirtuins家族成员之一,主要分布于线粒体中,可通过乙酰辅酶A广泛参与机体代谢调控。研究[14]证实,沉默信息调节因子(SIRT)3和SIRT7可调节心肌细胞凋亡和氧化应激反应,抑制心肌肥大, SIRT6可减轻心脏肥厚,但SIRT4在心脏中的作用尚未明确。ZHANG S J等[15]研究显示, SIRT4敲除能显著逆转参附强心饮对新生大鼠心肌细胞氧化应激、炎症和凋亡的影响。KOENTGES C等[16]研究显示, SIRT4表达增加会加速小鼠心力衰竭发展,这可能与其加重细胞线粒体氧化应激有关。
本研究结果显示, AHF组血清IGFBP-7、SIRT4水平显著高于对照组, IGFBP-7、SIRT4表达水平随着AHF患者病情分级的增加而显著升高,且与NT-proBNP、ROS表达水平呈正相关,提示血清IGFBP-7、SIRT4在AHF患者体内呈高表达,与既往研究[5, 16]结论相似。本研究还发现, AHF组预后不良者血清IGFBP-7、SIRT4水平显著高于预后良好者,且血清IGFBP-7、SIRT4高表达是AHF患者预后不良的危险因素,提示血清IGFBP-7、SIRT4水平对AHF患者预后具有一定预测作用。此外,本研究通过ROC曲线评估血清IGFBP-7、SIRT4、ROS水平对AHF患者预后的预测效能,发现血清IGFBP-7、SIRT4、ROS联合预测AHF预后不良的AUC为0.909, 预测效能较高。因此,临床应重视血清IGFBP-7、SIRT4高表达的AHF患者的长期管理工作,积极预防不良心血管事件的发生,从而降低患者再入院率和病死率。
综上所述, IGFBP-7、SIRT4在AHF患者血清中呈高表达,且其表达水平与病情分级和预后显著相关,两者联合检测对患者预后具有较高的预测价值,或可为AHF发生发展机制、靶向治疗方法研究等提供新的思路。然而本研究未纳入治疗因素、生活条件、心理健康状况、自我管理能力等因素对预后进行预测,导致结果可能存在一定偏倚性,后续应扩大样本量开展更深入的研究加以验证。
-
表 1 2组早产儿基本资料比较(x±s)[n(%)]
基本资料 个体化营养组(n=65) 常规营养组(n=49) χ2/ t P 性别 男 37(56.9) 29(59.2) 0.479 0.105 女 28(43.1) 20(40.8) 0.791 0.094 出生胎龄/周 30.1±1.4 30.9±1.1 1.432 0.112 出生体质量/g 1 353.0±318.0 1 416.0±287.0 0.648 0.089 出生身长/cm 40.7±1.9 41.1±2.5 1.310 0.176 出生头围/cm 27.3±1.3 28.2±1.7 1.158 0.275 居住环境 农村 17(26.2) 12(24.5) 0.635 0.092 城市 48(73.8) 37(75.5) 0.873 0.087 监护人学历 本科及以上 39(60.0) 30(61.2) 1.037 0.093 本科以下 26(40.0) 19(38.8) 0.972 0.081 表 2 2组早产儿1岁时神经心理发育的DQ比较(x±s)
组别 n 适应性 大动作 精细动作 语言 个人社交 个体化营养组 65 91.0±15.0* 86.0±13.0* 90.0±14.0* 82.0±13.0* 89.0±11.0* 常规营养组 49 86.0±13.0 79.0±12.0 86.0±11.0 71.0±12.0 82.0±13.0 DQ: 发育商。与常规营养组比较, * P < 0.05。 -
[1] CHAWANPAIBOON S, VOGEL J P, MOLLER A B, et al. Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis[J]. Lancet Glob Health, 2019, 7(1): e37-e46. doi: 10.1016/S2214-109X(18)30451-0
[2] 早产儿母乳强化剂使用专家共识工作组, 中华新生儿科杂志编辑委员会. 早产儿母乳强化剂使用专家共识[J]. 中华新生儿科杂志: 中英文, 2019, 34(5): 321-328. doi: 10.3760/cma.j.issn.2096-2932.2019.05.001 [3] BROWN J V, EMBLETON N D, HARDING J E, et al. Multi-nutrient fortification of human milk for preterm infants[J]. Cochrane Database Syst Rev, 2016(5): CD000343.
[4] PAMPANINI V, BOIANI A, DE MARCHIS C, et al. Preterm infants with severe extrauterine growth retardation (EUGR) are at high risk of growth impairment during childhood[J]. Eur J Pediatr, 2015, 174(1): 33-41. doi: 10.1007/s00431-014-2361-z
[5] 董萍, 付诗韵, 唐心蕊, 等. 出院后不同强化喂养方式对极早和超早产儿体格发育的影响研究[J]. 中国儿童保健杂志, 2020, 28(10): 1088-1092. https://www.cnki.com.cn/Article/CJFDTOTAL-ERTO202010007.htm [6] 《中华儿科杂志》编辑委员会, 中华医学会儿科学分会儿童保健学组, 中华医学会儿科学分会新生儿学组. 早产、低出生体质量儿出院后喂养建议[J]. 中华儿科杂志, 2016, 54(1): 6-12. [7] YOU J, SHAMSI B H, HAO M C, et al. A study on the neurodevelopment outcomes of late preterm infants[J]. BMC Neurol, 2019, 19(1): 108. doi: 10.1186/s12883-019-1336-0
[8] 桑田, 王颖, 王红梅, 等. 极低/超低出生体重早产儿头颅超声检查与神经发育评估的关系[J]. 中华新生儿科杂志: 中英文, 2020, 35(1): 4-9. [9] 熊菲, 毛萌. 早产儿生后体格生长评价[J]. 中华儿科杂志, 2019, 57(4): 318-320. doi: 10.3760/cma.j.issn.0578-1310.2019.04.021 [10] KOO W, TICE H. Human milk fortifiers do not meet the current recommendation for nutrients in very low birth weight infants[J]. JPEN J Parenter Enteral Nutr, 2017: 014860711771320. doi: 10.1177/0148607117713202
[11] 陈绍红, 何仕劼, 孟森玲, 等. 早产儿出院后体格发育和神经心理发育随访研究[J]. 中国妇幼保健, 2019, 34(14): 3224-3226. https://www.cnki.com.cn/Article/CJFDTOTAL-ZFYB201914024.htm [12] SICARD M, NUSINOVICI S, HANF M, et al. Fetal and postnatal head circumference growth: synergetic factors for neurodevelopmental outcome at 2 years of age for preterm infants[J]. Neonatology, 2017, 112(2): 122-129. doi: 10.1159/000464272
[13] 梁晶晶, 胡艳, 邢艳菲, 等. 晚期早产儿和早期足月儿1岁时神经心理发育水平的随访研究[J]. 中国当代儿科杂志, 2020, 22(7): 706-710. https://www.cnki.com.cn/Article/CJFDTOTAL-DDKZ202007008.htm [14] 曹云. 极早和超早产儿神经发育结局[J]. 中国儿童保健杂志, 2019, 27(2): 119-122. https://www.cnki.com.cn/Article/CJFDTOTAL-ERTO201902002.htm [15] AMISSAH E A, BROWN J, HARDING J E. Protein supplementation of human milk for promoting growth in preterm infants[J]. Cochrane Database Syst Rev, 2020, 9: CD000433.