Research progress of heparanase and syndecan-1 in malignant tumors
-
摘要: 多配体蛋白聚糖-1(SDC1)是硫酸乙酰肝素蛋白多糖(HSPG)的主要成员之一,具有调节代谢、转运和信息传递等功能。乙酰肝素酶(HPSE)诱导SDC1的脱落,形成HPSE/SDC1轴驱动生长因子信号传导并调节细胞行为,从而促进恶性肿瘤的生长、转移扩散、血管生成和溶骨作用。作者从HPSE和SDC1对恶性肿瘤的作用、HPSE/SDC1轴的形成以及针对该轴的抑制剂在肿瘤治疗中的应用情况等方面进行综述。Abstract: Syndecan-1 (SDC1) is one of the main members of heparin sulfate proteoglycan (HSPG), which has functions of regulating metabolism, transporting and information transmission. Heparinase (HPSE) induces the shedding of SDC1, forms the HPSE/SDC1 axis to drive growth factor signal transduction and regulate cell behavior, thereby promoting the growth, metastatic proliferation, angiogenesis and osteolysis of malignant tumors. This paper reviewed the effects of HPSE and SDC1 on malignant tumors, the formation of the HPSE/SDC1 axis and the application of inhibitors targeting the axis in tumor therapy.
-
Keywords:
- heparitinase /
- syndecan-1 /
- malignant tumor /
- angiogenesis /
- heparan sulfate proteoglycan /
- bioengineering
-
幽门螺杆菌(Hp)是一种呈螺旋形、微厌氧的革兰阴性菌,主要存在于人体胃幽门部位。Hp可以通过诱发炎症、调节癌基因和抑癌基因的表达,诱导黏膜上皮增殖和凋亡异常,同时其代谢产物包括一些酶类、毒素和蛋白,可直接损害黏膜引发疾病[1-2]。近年来, Hp感染与肿瘤的关系成为研究热点,老年患者中结直肠癌的发病率及病死率呈不断上升趋势,而结直肠腺瘤作为结直肠癌重要的癌前病变,与其关系密切。本研究观察老年患者中发生结直肠腺瘤的Hp感染情况,探讨Hp感染与其相关临床参数间的关系,现报告如下。
1. 资料与方法
1.1 一般资料
回顾性分析2016年1月—2020年12月江苏省省级机关医院胃肠黏膜活检及黏膜切除石蜡标本和切片,以及消化内窥镜检查报告等相关临床资料。本研究结直肠腺瘤组共纳入204例,其中Hp感染阳性112例, Hp感染阴性92例,对照组共纳入110例。结直肠腺瘤组年龄60~86岁,平均(65.12±4.38)岁,对照组年龄60~83岁,平均(63.12±5.71)岁, 2组比较差异无统计学意义(P>0.05)。纳入标准: ①一般资料(包括性别、年龄、身高、体质量、既往史及家族史等)齐全者; ②年龄≥60岁者; ③电子胃镜、电子结肠镜检查报告及病理组织学诊断报告齐全,且同期有Hp感染检查结果者。排除标准: ①消化性溃疡和胃癌等胃部疾病者; ②溃疡性结肠炎,克隆病、非腺瘤性息肉或腺瘤性息肉为家族遗传者; ③有胃切除手术或慢性肠道炎症性疾病病史患者; ④既往有幽门螺杆菌根除治疗史患者。
1.2 方法
分析病理诊断为结直肠腺瘤患者的苏木素精-伊红(HE)染色切片和同期检查Hp感染的胃黏膜吉姆萨(Giemsa)病理染色切片,以及相关消化内窥镜报告及临床信息的收集,包括性别、年龄、体质量、身高、糖尿病史、吸烟史、高血压史等。
结直肠腺瘤特征数据基于肠镜报告和病理报告,结直肠腺瘤病理分型主要为管状腺瘤、绒毛管状腺瘤、绒毛状腺瘤。本研究将含有绒毛成分的绒毛管状腺瘤和绒毛状腺瘤合并为一组。息肉所在部位分为远端(肛门至结肠脾曲)和近端(盲肠至结肠脾曲)。
1.3 观察指标
Giemsa染色结果判断和分析: 根据悉尼系统和《中国慢性胃炎共识意见》[3], 400倍光学显微镜下观察胃黏膜黏液层、表面上皮、小凹上皮和腺管上皮表面的Hp, 当镜下见典型细菌呈小的短杆状,稍弯曲的蓝色或者紫蓝色时为Hp阳性,特殊染色片上未见Hp为阴性。偶见或小于标本全长1/3有少数Hp为(+)。Hp分布超过标本全长1/3而未达2/3, 或连续性、薄而稀疏地存在于上皮表面为(
)。Hp成堆存在,基本分布于标本全长为( )。观察分析Hp感染与结直肠腺瘤临床病理参数[性别、体质量指数(BMI)、糖尿病史、高血压史、吸烟史和腺瘤部位、数目、大小、病理类型及上皮内瘤变程度等]间的关系。1.4 统计学方法
采用SPSS 19.0软件进行统计学分析,计量资料用(x±s)表示,组间比较采用t检验; 计数资料数据用百分比表示,组间比较用χ2检验。P < 0.05为差异有统计学意义。
2. 结果
2.1 结直肠腺瘤组与对照组Hp感染阳性率比较
光镜下显示,结直肠管状腺瘤由紧密的腺体构成,腺体背靠背,腺上皮有异型性(图 1, 放大倍数为10×20倍); 绒毛状腺瘤可见指状突起的绒毛状结构,腺上皮有异型性(图 2,放大倍数为10×20倍)。对照组肠腺体结构和细胞均缺乏异型性(图 3,放大倍数为10×20倍)。Hp呈蓝色短杆状(图 4, 放大倍数为10×40倍)。结直肠腺瘤组Hp感染阳性率为54.9%,高于对照组的42.7%,差异有统计学意义(P < 0.05)。见表 1。
表 1 结直肠腺瘤组与对照组Hp感染率比较[n(%)]组别 n Hp阴性及阳性强度 阳性合计 - + 结直肠腺瘤组 204 92 43 38 31 112(54.9)* 对照组 110 63 18 20 9 47(42.7) 与对照组比较, *P < 0.05。 2.2 Hp感染与结直肠腺瘤一般临床特征间的关系
结直肠腺瘤组中,男性Hp感染阳性率高于女性),差异无统计学意义(P>0.05)。BMI≥25 kg/m2患者Hp感染阳性率高于BMI < 25 kg/m2患者,差异有统计学意义(P < 0.05); 有糖尿病史患者Hp感染阳性率高于无糖尿病史患者,差异有统计学意义(P < 0.05); 有吸烟史患者Hp感染阳性率高于无吸烟史患者,差异有统计学意义(P < 0.05)。有高血压史患者Hp感染阳性率高于无高血压史患者,但差异无统计学意义(P>0.05)。见表 2。
表 2 Hp感染与结直肠腺瘤一般临床特征间的关系[n(%)]临床特征 n Hp阴性及阳性强度 阳性合计 χ2 P - + 性别 男 121 49 24 33 15 72(59.5) 2.544 0.111 女 83 43 19 13 8 40(48.2) BMI/(kg/m2) ≥25 133 52 31 38 12 81(60.9) 5.557 0.018 < 25 71 40 11 17 3 31(43.7) 糖尿病史 有 96 36 28 19 13 60(62.5) 4.228 0.040 无 108 56 24 17 11 52(48.1) 吸烟史 有 89 32 21 34 2 57(64.0) 5.330 0.021 无 115 60 30 10 15 55(47.8) 高血压史 有 56 23 10 19 4 33(58.9) 0.505 0.477 无 148 69 29 26 24 79(53.4) 2.3 Hp感染与结直肠腺瘤临床病理参数间的关系
统计分析结直肠腺瘤的部位、数量、大小、病理类型以及上皮内瘤变程度,发现远端部位Hp感染率高于近端部位,差异有统计学意义(P < 0.05)。伴有高级别上皮内瘤变Hp感染率高于伴有低级别上皮内瘤,差异有统计学意义(P < 0.05)。腺瘤单发与多发、腺瘤直径 < 1.0 cm与≥1.0 cm、管状腺瘤与绒毛及绒毛管状腺瘤比较,差异均无统计学意义(P>0.05)。见表 3。
表 3 Hp感染与结直肠腺瘤临床病理参数间的关系[n(%)]临床病理参数 n Hp阴性及阳性强度 阳性合计 χ2 P - + 腺瘤部位 近端 67 37 15 14 1 30(44.8) 4.131 0.042 远端 137 55 32 38 12 82(59.9) 腺瘤数量 单发 101 41 21 22 17 60(59.4) 1.639 0.200 多发 103 51 24 16 12 52(50.5) 腺瘤大小 直径 < 1.0 cm 135 64 34 17 20 71(52.6) 0.860 0.354 直径≥1.0 cm 69 28 12 18 11 41(59.4) 病理类型 管状 128 60 19 35 14 68(53.1) 0.438 0.508 绒毛及绒毛管状 76 32 9 23 12 44(57.9) 上皮内瘤变程度 低级别 160 78 36 21 25 82(51.3) 3.996 0.046 高级别 44 14 13 9 8 30(68.2) 3. 讨论
结直肠腺瘤是结直肠癌的癌前病变,其经历“腺瘤-腺癌”的发展序列后进展为结直肠癌。Hp为一种常见的致病菌及致癌因子, INOUE I等[4]通过对日本人群血清Hp抗体检测研究发现, Hp感染患者结直肠腺瘤发病风险显著高于Hp阴性患者。LIN Y L等[5]采用呼气试验研究人群Hp感染情况得出类似结果。但ABBASS K等[6]通过病例-对照研究认为Hp感染与发生结直肠腺瘤之间没有相关性。在老年患者人群中,关于Hp感染与结直肠息肉发生关系的研究较少。本研究在老年患者人群中,通过Giemsa染色病理学观察发现,结直肠腺瘤组Hp感染率显著高于对照组(P < 0.05), 提示老年患者中Hp感染可能与结直肠腺瘤的发生有一定的关联。同时发现,结直肠腺瘤组中伴有高级别上皮内瘤变者Hp感染率显著高于伴有低级别上皮内瘤者(P < 0.05), 提示老年患者Hp感染可能与结直肠腺瘤的进展有一定的相关性。此外,本研究结果显示,老年患者结直肠远端发生的腺瘤Hp感染率显著高于近端组(P < 0.05), 表明Hp感染在结直肠远端部位可能诱发更多的致癌物质,因而风险可能更高,这与ZHANG Y等[7]的研究结果相似。但也有研究[8]认为Hp感染不仅能增高近端结肠肿瘤的风险,也能增高远端结直肠肿瘤的风险。在一般临床参数中,本研究发现BMI≥25 kg/m2以及有糖尿病史、吸烟史的老年结直肠腺瘤患者Hp感染率相对较高,分析其原因为上述患者的生活习惯、个人依从性差可能易导致Hp感染。高血糖在结直肠腺瘤发生发展中的作用机制可能为2型糖尿病胰岛素抵抗,及高血糖所致的高胰岛素血症刺激机体合成胰岛素样生长因1(IGF-1), 从而促进结直肠腺瘤的发生发展[9]。
目前研究[10]认为, Hp感染能增高结直肠腺瘤的发生风险,可能是由于Hp刺激胃泌素-17[11],同时诱导体内COX-2的表达,进一步抑制细胞凋亡,促进肿瘤细胞增殖[12-13]。长期Hp感染会导致胃酸分泌减少,肠道pH改变后引起肠道菌群失调,肠源性的氨吸收增加也可促进肿瘤的发生发展[12]。同时Hp具有多种抗原蛋白,定植胃黏膜后可持续释放抗原,引起全身免疫反应,促使蛋白功能紊乱,进而引起细胞增殖与凋亡失衡,并抑制上皮细胞的损伤修复[14-16]。此外, Hp表面的脂多糖刺激机体IL-17和IL-6的水平升高,激活信号转导因子与转录激活因子3信号(STAT3)通路,进而促进结直肠腺瘤的发生发展[17-18]。
综上所述,本研究通过观察老年结直肠腺瘤患者临床病理学参数,发现Hp感染可能与BMI、糖尿病史、吸烟史、腺瘤的发生部位以及上皮内瘤变的程度有一定的关联性。但基于本研究纳入的标准、样本量、检测方法以及不同分组等因素,其结果有待进一步研究证实。
-
[1] RANGARAJAN S, RICHTER J R, RICHTER R P, et al. Heparanase-enhanced shedding of syndecan-1 and its role in driving disease pathogenesis and progression[J]. J Histochem Cytochem, 2020, 68(12): 823-840. doi: 10.1369/0022155420937087
[2] HERMANO E, GOLDBERG R, RUBINSTEIN A M, et al. Heparanase accelerates obesity-associated breast cancer progression[J]. Cancer Res, 2019, 79(20): 5342-5354. doi: 10.1158/0008-5472.CAN-18-4058
[3] PURUSHOTHAMAN A, SANDERSON R D. Heparanase: a dynamic promoter of myeloma progression[J]. Adv Exp Med Biol, 2020, 1221: 331-349. doi: 10.1007%2F978-3-030-34521-1_12
[4] CASSINELLI G, LANZI C. Heparanase: a potential therapeutic target in sarcomas[J]. Adv Exp Med Biol, 2020, 1221: 405-431. http://www.researchgate.net/publication/340533468_Heparanase_A_Potential_Therapeutic_Target_in_Sarcomas
[5] 靳浩, 周少波. 乙酰肝素酶的调控及在肿瘤治疗中的应用[J]. 安徽医学, 2016, 37(4): 489-492. doi: 10.3969/j.issn.1000-0399.2016.04.036 [6] BARASH U, LAPIDOT M, ZOHAR Y, et al. Involvement of heparanase in the pathogenesis of mesothelioma: basic aspects and clinical applications[J]. J Natl Cancer Inst, 2018, 110(10): 1102-1114. doi: 10.1093/jnci/djy032
[7] BOYANGO I, BARASH U, FUX L, et al. Targeting heparanase to the mammary epithelium enhances mammary gland development and promotes tumor growth and metastasis[J]. Matrix Biol, 2018, 65: 91-103. doi: 10.1016/j.matbio.2017.08.005
[8] GUTTER-KAPON L, ALISHEKEVITZ D, SHAKED Y, et al. Heparanase is required for activation and function of macrophages[J]. PNAS, 2016, 113(48): E7808-E7817. doi: 10.1073/pnas.1611380113
[9] WEISSMANN M, ARVATZ G, HOROWITZ N, et al. Heparanase-neutralizing antibodies attenuate lymphoma tumor growth and metastasis[J]. PNAS, 2016, 113(3): 704-709. doi: 10.1073/pnas.1519453113
[10] VLODAVSKY I, BECKHOVE P, LERNER I, et al. Significance of heparanase in cancer and inflammation[J]. Cancer Microenviron, 2012, 5(2): 115-132. doi: 10.1007/s12307-011-0082-7
[11] TATSUMI Y, MIYAKE M, SHIMADA K, et al. Inhibition of heparanase expression results in suppression of invasion, migration and adhesion abilities of bladder cancer cells[J]. Int J Mol Sci, 2020, 21(11): 3789. doi: 10.3390/ijms21113789
[12] VORNICOVA O, NARODITSKY I, BOYANGO I, et al. Prognostic significance of heparanase expression in primary and metastatic breast carcinoma[J]. Oncotarget, 2018, 9(5): 6238-6244. doi: 10.18632/oncotarget.23560
[13] SUN X, ZHANG G, NIAN J, et al. Elevated heparanase expression is associated with poor prognosis in breast cancer: a study based on systematic review and TCGA data[J]. Oncotarget, 2017, 8(26): 43521-43535. doi: 10.18632/oncotarget.16575
[14] CARUANA I, SAVOLDO B, HOYOS V, et al. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes[J]. Nat Med, 2015, 21(5): 524-529. doi: 10.1038/nm.3833
[15] TENG Y H, AQUINO R S, PARK P W. Molecular functions of syndecan-1 in disease[J]. Matrix Biol, 2012, 31(1): 3-16. doi: 10.1016/j.matbio.2011.10.001
[16] PARIMON T, BRAUER R, SCHLESINGER S Y, et al. Syndecan-1 controls lung tumorigenesis by regulating miRNAs packaged in exosomes[J]. Am J Pathol, 2018, 188(4): 1094-1103. doi: 10.1016/j.ajpath.2017.12.009
[17] SOLIMAN N A, YUSSIF S M, SHEBL A M. Syndecan-1 could be added to hormonal receptors and HER2/neu in routine assessment of invasive breast carcinoma, relation of its expression to prognosis and clinicopathological parameters[J]. Pathol Res Pract, 2019, 215(5): 977-982. doi: 10.1016/j.prp.2019.02.003
[18] MAHTOUK K, HOSE D, RAYNAUD P, et al. Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma[J]. Blood, 2007, 109(11): 4914-4923. doi: 10.1182/blood-2006-08-043232
[19] SZARVAS T, REIS H, VOM DORP F, et al. Soluble syndecan-1(SDC1) serum level as an independent pre-operative predictor of cancer-specific survival in prostate cancer[J]. Prostate, 2016, 76(11): 977-985. doi: 10.1002/pros.23186
[20] JAVADI J, HEIDARI-HAMEDANI G, SCHMALZL A, et al. Syndecan-1 overexpressing mesothelioma cells inhibit proliferation, wound healing, and tube formation of endothelial cells[J]. Cancers, 2021, 13(4): 655. doi: 10.3390/cancers13040655
[21] CHEN J, TANG J, CHEN W, et al. Effects of syndecan-1 on the expression of syntenin and the migration of U251 glioma cells[J]. Oncol Lett, 2017, 14(6): 7217-7224. http://europepmc.org/articles/PMC5754878/
[22] WANG X, HE J, ZHAO X, et al. Syndecan-1 suppresses epithelial-mesenchymal transition and migration in human oral cancer cells[J]. Oncol Rep, 2018, 39(4): 1835-1842. http://www.ncbi.nlm.nih.gov/pubmed/29484435
[23] PASQUALON T, PRUESSMEYER J, WEIDENFELD S, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation[J]. Cell Mol Life Sci, 2015, 72(19): 3783-3801. doi: 10.1007/s00018-015-1912-4
[24] HOLLÓSI P, VÁNCZA L, KARÁSZI K, et al. Syndecan-1 promotes hepatocyte-like differentiation of hepatoma cells targeting ets-1 and AP-1[J]. Biomolecules, 2020, 10(10): 1356. doi: 10.3390/biom10101356
[25] LIU Z, JIN H, YANG S, et al. SDC1 knockdown induces epithelial-mesenchymal transition and invasion of gallbladder cancer cells via the ERK/Snail pathway[J]. J Int Med Res, 2020, 48(8): 300060520947883. http://www.ncbi.nlm.nih.gov/pubmed/?term=32812461
[26] SZARVAS T, REIS H, KRAMER G, et al. Enhanced stromal syndecan-1 expression is an independent risk factor for poor survival in bladder cancer[J]. Hum Pathol, 2014, 45(4): 674-682. doi: 10.1016/j.humpath.2013.10.036
[27] KUMAR-SINGH A, SHRINET J, PARNIEWSKA M M, et al. Mapping the interactome of the nuclear heparan sulfate proteoglycan syndecan-1 in mesothelioma cells[J]. Biomolecules, 2020, 10(7): 1034. doi: 10.3390/biom10071034
[28] CHEN L, SANDERSON R D. Heparanase regulates levels of syndecan-1 in the nucleus[J]. PLoS One, 2009, 4(3): e4947. doi: 10.1371/journal.pone.0004947
[29] YU S, LV H, ZHANG H, et al. Heparanase-1-induced shedding of heparan sulfate from syndecan-1 in hepatocarcinoma cell facilitates lymphatic endothelial cell proliferation via VEGF-C/ERK pathway[J]. Biochem Biophys Res Commun, 2017, 485(2): 432-439. doi: 10.1016/j.bbrc.2017.02.060
[30] RAMANI V C, VLODAVSKY I, NG M, et al. Chemotherapy induces expression and release of heparanase leading to changes associated with an aggressive tumor phenotype[J]. Matrix Biol, 2016, 55: 22-34. doi: 10.1016/j.matbio.2016.03.006
[31] JUNG O, TRAPP-STAMBORSKI V, PURUSHOTHAMAN A, et al. Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins[J]. Oncogenesis, 2016, 5(2): e202. http://pubmedcentralcanada.ca/pmcc/articles/PMC5154350/
[32] LIU C J, CHANG J, LEE P H, et al. Adjuvant heparanase inhibitor PI-88 therapy for hepatocellular carcinoma recurrence[J]. World J Gastroenterol, 2014, 20(32): 11384-11393. doi: 10.3748/wjg.v20.i32.11384
[33] RITCHIE J P, RAMANI V C, REN Y, et al. SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis[J]. Clin Cancer Res, 2011, 17(6): 1382-1393. doi: 10.1158/1078-0432.CCR-10-2476
[34] POUPARD N, BADAROU P, FASANI F, et al. Assessment of heparanase-mediated angiogenesis using microvascular endothelial cells: identification of λ-carrageenan derivative as a potent anti angiogenic agent[J]. Mar Drugs, 2017, 15(5): 134. doi: 10.3390/md15050134
[35] ZHOU H, ROY S, COCHRAN E, et al. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis[J]. PLoS One, 2011, 6(6): e21106. doi: 10.1371/journal.pone.0021106
[36] BABURAJEEV C P, MOHAN C D, RANGAPPA S, et al. Identification of novel class of triazolo-thiadiazoles as potent inhibitors of human heparanase and their anticancer activity[J]. BMC Cancer, 2017, 17(1): 235. doi: 10.1186/s12885-017-3214-8
[37] ZHANG L, SULLIVAN P S, GOODMAN J C, et al. MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase[J]. Cancer Res, 2011, 71(3): 645-654. http://www.ncbi.nlm.nih.gov/pubmed/21266359?dopt=AbstractPlus
[38] METWALY H A, EL-GAYAR A M, EL-SHISHTAWY M M. Inhibition of the signaling pathway of syndecan-1 by synstatin: a promising anti-integrin inhibitor of angiogenesis and proliferation in HCC in rats[J]. Arch Biochem Biophys, 2018, 652: 50-58. http://europepmc.org/abstract/MED/29928859
[39] LI R Y, ZHANG L L, JIA L Z, et al. MicroRNA-143 targets syndecan-1 to repress cell growth in melanoma[J]. PLoS One, 2014, 9(4): e94855. http://carcin.oxfordjournals.org/external-ref?access_num=10.1371/journal.pone.0094855&link_type=DOI
计量
- 文章访问数: 477
- HTML全文浏览量: 292
- PDF下载量: 33