B细胞在原发性干燥综合征发病机制及治疗中的研究进展

高雅静, 王慧, 王永福

高雅静, 王慧, 王永福. B细胞在原发性干燥综合征发病机制及治疗中的研究进展[J]. 实用临床医药杂志, 2021, 25(14): 108-112. DOI: 10.7619/jcmp.20211343
引用本文: 高雅静, 王慧, 王永福. B细胞在原发性干燥综合征发病机制及治疗中的研究进展[J]. 实用临床医药杂志, 2021, 25(14): 108-112. DOI: 10.7619/jcmp.20211343
GAO Yajing, WANG Hui, WANG Yongfu. Research progress of B cells in pathogenesis and treatment of primary Sjögren's syndrome[J]. Journal of Clinical Medicine in Practice, 2021, 25(14): 108-112. DOI: 10.7619/jcmp.20211343
Citation: GAO Yajing, WANG Hui, WANG Yongfu. Research progress of B cells in pathogenesis and treatment of primary Sjögren's syndrome[J]. Journal of Clinical Medicine in Practice, 2021, 25(14): 108-112. DOI: 10.7619/jcmp.20211343

B细胞在原发性干燥综合征发病机制及治疗中的研究进展

基金项目: 

国家自然科学基金项目 81760302

内蒙古自然科学基金项目 2018LH08068

详细信息
    通讯作者:

    王永福, E-mail: wyf5168@hotmail.com

  • 中图分类号: R593.2;R392

Research progress of B cells in pathogenesis and treatment of primary Sjögren's syndrome

  • 摘要: 原发性干燥综合征(pSS)是一种全身性自身免疫性疾病,临床以免疫介导的腺体受累导致眼干、口干为主要特征,可伴有疲劳、骨骼肌疼痛和其他全身症状。B淋巴细胞活化是pSS的一个主要特征,B细胞活化因子(BAFF)水平升高与疾病活动度、异位生发中心形成和血清自身抗体水平相关。目前针对pSS的治疗方法非常有限,基本为致力于改善干燥症状,故需逐渐探索与pSS相关的特异性免疫疗法。作者对改善病情抗风湿药(DMARDs)调节B细胞治疗pSS的现状进行综述并展望。
    Abstract: Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by dry eyes and dry mouth due to immune-mediated glandular involvement, patients with pSS may accompany by fatigue, skeletal muscle pain, and other systemic symptoms. B lymphocyte activation is a major feature of pSS, and elevated level of B-cell activating factor (BAFF) is associated with disease activity, ectopic germinal center formation, and serum autoantibody levels. Currently, the treatment methods for pSS are very limited, mainly focusing on improving dry symptoms, so it is necessary to gradually explore specific immunotherapy related to pSS. In this paper, the status quo of disease modifying antirheumatic drugs (DMARDs) regulating B cell therapy for PSS was reviewed and prospected.
  • 中国是全球30个结核病高负担国家之一,尽管近年来结核病发病的绝对数和发病率均缓慢下降,但耐药问题日益严重[1]。《耐药结核病化学治疗指南(2019年简版)》[2]提出,在耐多药结核病化学治疗方案中,临床应优先选择高代氟喹诺酮类药品。目前认为氟喹诺酮类药物耐药机制主要为耐药基因决定区(QRDR)gyrA基因或gyrB基因的突变,其中QRDR的gyrA基因突变是最主要机制,可解释60%~90%的耐药表型[3-4],故分析不同gyrA基因突变类型的菌株对氟喹诺酮类药物的最低抑菌浓度(MIC)可为结核病的药物治疗提供参考依据。本研究以结核分枝杆菌临床分离株作为研究样本,检测其gyrA基因耐药决定区突变情况,并分析其与氟喹诺酮类药物MIC的关系,旨在为结核病的临床治疗提供指导。

    收集江苏省徐州市传染病医院2017年10月—2019年10月分离的640株痰结核分枝杆菌阳性临床分离株作为研究标本,结核分枝杆菌标准株(H37Rv)来自江苏省疾控中心结核病实验室保存株(ATCC27294号)。

    结核分枝杆菌氟喹诺酮类药物耐药基因检测试剂盒(福建厦门致善生物有限公司,国械注准20163401457),左氧氟沙星(BA7020)、氧氟沙星(BA7014)、加替沙星(BA7026-1)、莫西沙星(BA7022)药敏试剂盒均购自珠海贝索生物公司, Alamar blue显色液(美国伯乐生命医学有限公司, BUF012B)。

    采用煮沸法提取菌株基因组DNA。采用标准接种环收集细菌2~3环,转移至含250 μL DNA提取液的无菌Eppendorf离心管中,反复吹打重悬细菌; 菌液100 ℃ 20 min煮沸灭活,以12 000 g离心10 min, 取上清液于-20 ℃保存备用。

    ① 体系: 2×FQ PCR Mix(含扩增引物、FAM标记的耐药突变位点检测探针、4×dNTP、PCR缓冲液、ddH2O)19.6 μL, 0.4 μL TB酶混合液(UNG酶及taq DNA聚合酶),样本DNA 5 μL。②条件: UNG酶处理,50 ℃ 2 min, 变性90 ℃ 10 min; 95 ℃ 10 s, 65 ℃ 20 s(每个循环下降1 ℃), 78 ℃ 25 s, 10个循环; 95 ℃ 10 s,61 ℃ 15 s(检测荧光), 78 ℃ 15 s, 循环45次,荧光通道选用FAM和HEX; 熔解分析程序: 95 ℃ 2 min, 40 ℃ 2 min, 40~85 ℃(每1 ℃采集FAM和HEX通道荧光信号),循环1次。③结果分析: 通过比较样品及阳性对照熔解曲线Tm值差异确定样品是否发生突变,与阳性对照熔点一致判定为野生型,低于阳性对照2 ℃以上判定为突变型。

    对PCR-探针熔解分析法检测到的对氟喹诺酮类药物耐药的菌株进行gyrA基因扩增及测序,基因扩增引物序列为[5]上游引物5′-TGACATCGAGCAGGAGATGC-3′、下游引物5′-GGGCTTCGGTGTACCTCATC-3′, 测序由上海康黎医学检验所完成,采用BLAST网站将测序结果与标准菌株基因序列进行比较。

    采用微孔板稀释法对筛选出的gyrA基因突变菌株进行结核分枝杆菌菌株MIC的检测。①梯度浓度药物微孔板的制备: 设置氧氟沙星、左氧氟沙星、莫西沙星、加替沙星药物的浓度梯度为0.001 5、0.003、0.006、0.125、0.250、0.500、1.000、2.000、4.000、8.000、16.000、32.000 μg/mL。② MIC检测: 菌株已提前培养2~3周,将液体培养基以4 000 g离心15 min, 取沉淀,采用无菌盐水稀释至1个麦氏浓度,按1∶100稀释后向微孔板加入100 μL菌液,将微孔板置于37 ℃下孵育,培养48 h后查看有无污染,确定无异常后孵育至7 d, 在对照孔中细菌生长良好的前提下读取抑制结核菌可见生长的最小浓度,若样本孔内浓度小于临界浓度,则判定为敏感,大于相应的值则判为耐药,抑制结核分枝杆菌生长的最低药物浓度为最低MIC。耐药标准[5-8]: 氧氟沙星或左氧氟沙星的耐药临界点浓度为 < 2.0 μg/mL, 低水平耐药为4.0~ < 8.0 μg/mL, 高水平耐药为≥8.0 μg/mL; 莫西沙星耐药临界点浓度为 < 0.5 μg/mL, 低水平耐药为1.0~ < 2.0 μg/mL, 高水平耐药为≥2.0 μg/mL; 加替沙星耐药临界点浓度为 < 1.0 μg/mL, 低水平耐药为2.0~ < 4.0 μg/mL, 高水平耐药为≥4.0 μg/mL。

    采用SPSS 19.0统计学软件分析数据,不同突变类型菌株耐药率、MIC的比较采用卡方检验或Fisher精确检验,检验水准α=0.05, P < 0.05为差异有统计学意义。

    640株痰菌阳性临床分离株中共检测到gyrA基因突变株45株(7.03%), 其中94位点突变26株(57.78%)、90位点突变15例(33.33%)、91位点突变4株(8.89%)。90位点氨基酸变化为丙氨酸(Ala)→缬氨酸(Val), 91位点氨基酸变化为丝氨酸(Ser)→脯氨酸(Pro), 94位点氨基酸变化为天冬氨酸(Asp)→酪氨酸(Tyr)、Asp→天冬酰胺(Asn)、Asp→Ala、Asp→甘氨酸(Gly)。见表 1

    表  1  结核分枝杆菌分离株gyrA基因突变情况分析
    位点 突变类型 氨基酸变化 菌株数/株 占比/%
    90 gCg→gTg Ala→Val 15 33.33
    91 Tcg→Ccg Ser→Pro 4 8.89
    94 Gac→Tac Asp→Tyr 4 8.89
    Gac→Aac Asp→Asn 6 13.33
    gAc→gCc Asp→Ala 6 13.33
    gAc→gGc Asp→Gly 10 22.22
    Ala: 丙氨酸; Val: 缬氨酸; Ser: 丝氨酸; Pro: 脯氨酸; Asp: 天冬氨酸; Tyr: 酪氨酸; Asn: 天冬酰胺; Gly: 甘氨酸。
    下载: 导出CSV 
    | 显示表格

    90位点突变菌株和94位点突变为Tyr、Asn、Gly的菌株检出氧氟沙星高水平耐药。见表 2

    表  2  不同类型gyrA基因突变菌株的氧氟沙星耐药情况[n(%)]
    突变类型 菌株数/株 表型DST 氧氟沙星MIC/(μg/mL)
    低水平耐药菌株 高水平耐药菌株 1.000 2.000 4.000 8.000 16.000 32.000
    90Ala→Val 15 0 2(13.33) 4(26.67) 9(60.00) 0 2(13.33) 0 0
    91Ser→Pro 4 0 0 0 4(100.00) 0 0 0 0
    94Asp→Tyr 4 0 1(25.00) 0 3(75.00) 0 1(25.00) 0 0
    94Asp→Asn 6 2(33.33) 2(33.33) 0 2(33.33) 2(33.33) 2(33.33) 0 0
    94Asp→Ala 6 0 0 0 6(100.00) 0 0 0 0
    94Asp→Gly 10 2(20.00) 4(40.00) 1(10.00) 3(30.00) 2(20.00) 2(20.00) 2(20.00) 0
    Ala: 丙氨酸; Val: 缬氨酸; Ser: 丝氨酸; Pro: 脯氨酸; Asp: 天冬氨酸; Tyr: 酪氨酸; Asn: 天冬酰胺; Gly: 甘氨酸; MIC: 最低抑菌浓度。
    下载: 导出CSV 
    | 显示表格

    各位点突变菌株均未检出左氧氟沙星高水平耐药, 94位点突变为Tyr、Asn、Gly的菌株检出左氧氟沙星低水平耐药。见表 3

    表  3  不同类型gyrA基因突变菌株的左氧氟沙星耐药情况[n(%)]
    突变类型 菌株数/株 表型DST 左氧氟沙星MIC/(μg/mL)
    低水平耐药菌株 高水平耐药菌株 0.250 0.500 1.000 2.000 4.000 8.000 16.000
    90Ala→Val 15 0 0 0 8(53.33) 5(33.33) 2(13.33) 0 0 0
    91Ser→Pro 4 0 0 0 0 4(100.00) 0 0 0 0
    94Asp→Tyr 4 2(50.00) 0 0 0 0 2(50.00) 2(50.00) 0 0
    94Asp→Asn 6 3(50.00) 0 0 0 2(33.33) 1(16.67) 3(50.00) 0 0
    94Asp→Ala 6 0 0 0 0 2(33.33) 4(66.67) 0 0 0
    94Asp→Gly 10 2(20.00) 0 0 0 4(40.00) 4(50.00) 2(20.00) 0 0
    Ala: 丙氨酸; Val: 缬氨酸; Ser: 丝氨酸; Pro: 脯氨酸; Asp: 天冬氨酸; Tyr: 酪氨酸; Asn: 天冬酰胺; Gly: 甘氨酸; MIC: 最低抑菌浓度。
    下载: 导出CSV 
    | 显示表格

    90位点、91位点突变菌株和94位点突变为Tyr、Asn、Gly、Ala的菌株均检出莫西沙星高水平耐药菌株,其中91位点突变菌株和94位点突变为Tyr、Asn、Gly的菌株高水平耐药检出率≥50%。见表 4

    表  4  不同类型gyrA基因突变菌株的莫西沙星耐药情况[n(%)]
    突变类型 菌株数/株 表型DST 莫西沙星MIC/(μg/mL)
    低水平耐药菌株 高水平耐药菌株 0.250 0.500 1.000 2.000 4.000 8.000 16.000
    90Ala→Val 15 3(20.00) 2(13.33) 6(40.00) 4(26.67) 3(20.00) 0 2(13.33) 0 0
    91Ser→Pro 4 0 2(50.00) 0 2(50.00) 0 0 2(50.00) 0 0
    94Asp→Tyr 4 0 2(50.00) 0 2(50.00) 0 0 2(50.00) 0 0
    94Asp→Asn 6 0 4(66.67) 0 2(33.33) 0 0 4(66.66) 0 0
    94Asp→Ala 6 2(33.33) 2(33.33) 0 2(33.33) 2(33.33) 0 2(33.33) 0 0
    94Asp→Gly 10 0 5(50.00) 0 5(50.00) 0 0 2(20.00) 3(30.00) 0
    Ala: 丙氨酸; Val: 缬氨酸; Ser: 丝氨酸; Pro: 脯氨酸; Asp: 天冬氨酸; Tyr: 酪氨酸; Asn: 天冬酰胺; Gly: 甘氨酸; MIC: 最低抑菌浓度。
    下载: 导出CSV 
    | 显示表格

    90位点、91位点突变菌株和94位点突变为Tyr、Asn、Gly、Ala的菌株检出加替沙星高水平耐药菌株,其中91位点突变为Tyr、Asn、Gly的菌株高水平耐药检出率≥50%。见表 5

    表  5  不同类型gyrA基因突变菌株的加替沙星耐药情况[n(%)]
    突变类型 菌株数/株 表型DST 加替沙星MIC/(μg/mL)
    低水平耐药菌株 高水平耐药菌株 0.125 0.250 0.500 1.000 2.000 4.000 8.000 16.000
    90Ala→Val 15 0 3(20.00) 7(46.67) 1(6.67) 3(20.00) 1(6.67) 0 3(20.00) 0 0
    91Ser→Pro 4 0 1(25.00) 1(25.00) 1(25.00) 0 1(25.00) 0 1(25.00) 0 0
    94Asp→Tyr 4 1(25.00) 2(50.00) 0 1(25.00) 0 0 1(25.00) 2(50.00) 0 0
    94Asp→Asn 6 0 4(66.67) 1(16.67) 1(16.67) 0 0 0 4(66.67) 0 0
    94Asp→Ala 6 1(16.67) 2(33.33) 0 2(33.33) 0 1(16.67) 1(16.67) 2(33.33) 0 0
    94Asp→Gly 10 1(10.00) 6(60.00) 2(20.00) 0 0 1(10.00) 1(10.00) 4(40.00) 2(20.00) 0
    Ala: 丙氨酸; Val: 缬氨酸; Ser: 丝氨酸; Pro: 脯氨酸; Asp: 天冬氨酸; Tyr: 酪氨酸; Asn: 天冬酰胺; Gly: 甘氨酸; MIC: 最低抑菌浓度。
    下载: 导出CSV 
    | 显示表格

    WANG Z等[9]报道, 202株临床分离株中, 15株(7.4%)出现氧氟沙星耐药,其中有12株发生gyrA基因突变。本研究从徐州地区640例痰菌阳性临床分离株中检测到45株(7.03%)gyrA基因突变菌株,其中90位点突变15株、91位点突变4株、94位点突变26株,与相关研究[10-11]报道结果相似。

    本研究结果显示, 45株gyrA基因突变株对氧氟沙星、左氧氟沙星、莫西沙星和加替沙星的低水平耐药与高水平耐药比例分别为4∶9、7∶0、5∶17和3∶18。由此可见, 4种药物中,氧氟沙星、莫西沙星和加替沙星主要表现为高水平耐药,而左氧氟沙星仅表现为低水平耐药。CHERNYAEVA E[12]等报道, 32例gyrA突变及氧氟沙星耐药菌株中,低水平耐药与高水平耐药的比例为12∶20, 与本研究结果相似。本研究还发现, 90、91和94位点突变菌株对左氧氟沙星均为低水平耐药,与相关研究[13]报道的94Asp→Asn/Tyr、94Asp→Gly、94Asp→His突变菌株为高水平耐药的结果不同,这可能与该研究检测出的耐药菌株数量偏少和地区差异有关。CHIEN J Y等[7]报道, 15株94Asp→Gly突变菌株中有12株为高水平耐药,这与本研究结论一致。

    相关研究[14]表明,氟喹诺酮类药物耐药基因gyrA基因突变主要发生在结核分枝杆菌的QRDR, 多数位于基因保守区67~106位点,本研究显示gyrA基因突变主要发生于90位点、91位点和94位点,其中94位点突变最多,与其他报道结果类似。不同耐药基因位点的突变与结核分枝杆菌耐药水平存在一定差异[15-16], 90位点及94位点氨基酸突变可引起结核分枝杆菌对氟喹诺酮类药物的高水平耐药[17]。本研究发现,以94位点突变为例, 94位点Asp突变为Asn、Gly、Tyr的菌株更易对除左氧氟沙星以外的3种药物表现出高水平耐药,提示这些氨基酸突变是引起结核分枝杆菌对氟喹诺酮类药物高水平耐药的因素。相关研究[18]报道, 94位点Asp突变为Gly、半胱氨酸、Asn等可引起高水平耐药,而突变为Ala、Tyr可引起低水平耐药。分析原因,可能是氨基酸性质的改变影响了耐药性, Gly、Asn均为非电离极性氨基酸,而Ala、Tyr等氨基酸为非极性,与原94位点氨基酸Asp性质相似,故对耐药性的影响较小,耐药浓度变化不明显[19]

    本研究以痰菌阳性临床分离株为研究对象,研究范围更广,适用于普通痰菌阳性患者,具有广泛的应用价值。本研究应用探针熔解曲线法对结核分枝杆菌氟喹诺酮类药物gyrA基因耐药决定区突变进行检测初步筛选耐药株,与传统药敏试验和基因测序相比,具有简便、快速、准确的优点,有利于早期判断患者是否耐药。对探针熔解曲线法检测的耐药株进行基因测序检测不同耐药位点,不必对每一个痰菌阳性株都进行测序,提高了效率,节约了成本,也为研究结核分枝杆菌gyrA基因突变类型与氟喹诺酮类药物耐药的关系提供了一种科学、简便的研究方法。采用MicroDSTTM微孔板方法测定MIC,与传统比例法相比具有快速、准确、简便的优势。分析研究结果后,结合患者临床,对于低水平耐药患者可通过适当加大药物剂量来提高治疗效果。尽管目前已有较多研究证实gyrA基因突变为结核分枝杆菌氟喹诺酮类药物耐药的主要机制,但仍有部分耐药株未能检测到突变,这可能与gyrB基因突变有关,或因为部分突变发生在QRDR以外区域。因此,临床对gyrB基因耐药决定区及其他区域耐药机制的探索仍需进一步深入[20-21]

    综上所述,结核分枝杆菌gyrA基因突变与氟喹诺酮类药物耐药水平及MIC密切相关,其中以94位点基因突变最多。检测菌株的基因突变类型可预测患者对氟喹诺酮类药物的耐药水平,从而为结核病患者治疗方案的选择提供依据。但本研究存在一定局限性,如样本数量较少,且仅涉及gyrA基因突变,未对其他耐药机制及耐药基因进行分析,未来仍需扩大样本量并拓展研究范围深入探讨,从而为结核病的临床用药提供重要参考。

  • [1]

    MARIETTE X, CRISWELL L A. Primary Sjögren's syndrome[J]. N Engl J Med, 2018, 378(10): 931-939. doi: 10.1056/NEJMcp1702514

    [2]

    NOCTURNE G, MARIETTE X. Advances in understanding the pathogenesis of primary Sjögren's syndrome[J]. Nat Rev Rheumatol, 2013, 9(9): 544-556. doi: 10.1038/nrrheum.2013.110

    [3]

    RAMOS-CASALS M, BRITO-ZERÓN P, BOMBARDIERI S, et al. EULAR recommendations for the management of Sjögren's syndrome with topical and systemic therapies[J]. Ann Rheum Dis, 2020, 79(1): 3-18. doi: 10.1136/annrheumdis-2019-216114

    [4]

    CHRISTODOULOU M I, KAPSOGEORGOU E K, MOUTSOPOULOS H M. Characteristics of the minor salivary gland infiltrates in Sjögren's syndrome[J]. J Autoimmun, 2010, 34(4): 400-407. doi: 10.1016/j.jaut.2009.10.004

    [5]

    PUGA I, COLS M, BARRA C M, et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen[J]. Nat Immunol, 2012, 13(2): 170-180. doi: 10.1038/ni.2194

    [6]

    BARCELOS F, MARTINS C, PAPOILA A, et al. Association between memory B-cells and clinical and immunological features of primary Sjögren's syndrome and Sicca patients[J]. Rheumatol Int, 2018, 38(6): 1063-1073. doi: 10.1007/s00296-018-4018-0

    [7]

    WANG R X, YU C R, DAMBUZA I M, et al. Interleukin-35 induces regulatory B cells that suppress autoimmune disease[J]. Nat Med, 2014, 20(6): 633-641. doi: 10.1038/nm.3554

    [8]

    GREEN N M, MARSHAK-ROTHSTEIN A. Toll-like receptor driven B cell activation in the induction of systemic autoimmunity[J]. Semin Immunol, 2011, 23(2): 106-112. doi: 10.1016/j.smim.2011.01.016

    [9]

    LAVIE F, MICELI-RICHARD C, ITTAH M, et al. B-cell activating factor of the tumour necrosis factor family expression in blood monocytes and T cells from patients with primary Sjögren's syndrome[J]. Scand J Immunol, 2008, 67(2): 185-192. doi: 10.1111/j.1365-3083.2007.02049.x

    [10]

    SCHNEIDER P, TSCHOPP J. BAFF and the regulation of B cell survival[J]. Immunol Lett, 2003, 88(1): 57-62. doi: 10.1016/S0165-2478(03)00050-6

    [11]

    KAMPA M, NOTAS G, STATHOPOULOS E N, et al. The TNFSF members APRIL and BAFF and their receptors TACI, BCMA, and BAFFR in oncology, with a special focus in breast cancer[J]. Front Oncol, 2020, 10: 827. doi: 10.3389/fonc.2020.00827

    [12]

    GROOM J, KALLED S L, CUTLER A H, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren's syndrome[J]. J Clin Invest, 2002, 109(1): 59-68. doi: 10.1172/JCI0214121

    [13]

    MARIETTE X, ROUX S, ZHANG J, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren's syndrome[J]. Ann Rheum Dis, 2003, 62(2): 168-171. doi: 10.1136/ard.62.2.168

    [14]

    LAVIE F, MICELI-RICHARD C, QUILLARD J, et al. Expression of BAFF(BLyS) in T cells infiltrating labial salivary glands from patients with Sjögren's syndrome[J]. J Pathol, 2004, 202(4): 496-502. doi: 10.1002/path.1533

    [15]

    YOSHIMOTO K, SUZUKI K, TAKEI E, et al. Elevated expression of BAFF receptor, BR3, on monocytes correlates with B cell activation and clinical features of patients with primary Sjögren's syndrome[J]. Arthritis Res Ther, 2020, 22(1): 157. doi: 10.1186/s13075-020-02249-1

    [16]

    QUARTUCCIO L, SALVIN S, FABRIS M, et al. BLyS upregulation in Sjögren's syndrome associated with lymphoproliferative disorders, higher ESSDAI score and B-cell clonal expansion in the salivary glands[J]. Rheumatology: Oxford, 2013, 52(2): 276-281. doi: 10.1093/rheumatology/kes180

    [17]

    DASS S, BOWMAN S J, VITAL E M, et al. Reduction of fatigue in Sjögren's syndrome with rituximab: results of a randomised, double-blind, placebo-controlled pilot study[J]. Ann Rheum Dis, 2008, 67(11): 1541-1544. doi: 10.1136/ard.2007.083865

    [18]

    MEIJER J M, MEINERS P M, VISSINK A, et al. Effectiveness of rituximab treatment in primary Sjögren's syndrome: a randomized, double-blind, placebo-controlled trial[J]. Arthritis Rheum, 2010, 62(4): 960-968. doi: 10.1002/art.27314

    [19]

    CARUBBI F, CIPRIANI P, MARRELLI A, et al. Efficacy and safety of rituximab treatment in early primary Sjögren's syndrome: a prospective, multi-center, follow-up study[J]. Arthritis Res Ther, 2013, 15(5): R172. doi: 10.1186/ar4359

    [20]

    GOTTENBERG J E, CINQUETTI G, LARROCHE C, et al. Efficacy of rituximab in systemic manifestations of primary Sjögren's syndrome: results in 78 patients of the AutoImmune and Rituximab registry[J]. Ann Rheum Dis, 2013, 72(6): 1026-1031. doi: 10.1136/annrheumdis-2012-202293

    [21]

    HASEGAWA J, HAYAMI N, HOSHINO J, et al. Cryoglobulinemic vasculitis with primary Sjögren's syndrome: a case report[J]. Mod Rheumatol, 2018, 28(3): 570-574. doi: 10.3109/14397595.2015.1128870

    [22]

    DEVAUCHELLE-PENSEC V, MARIETTE X, JOUSSE-JOULIN S, et al. Treatment of primary Sjögren's syndrome with rituximab: a randomized trial[J]. Ann Intern Med, 2014, 160(4): 233-242. http://smartsearch.nstl.gov.cn/paper_detail.html?id=db9a3617d0fe2d931ca1a54e61f9b8d7

    [23]

    BOOTSMA H, KROESE F G M, VISSINK A. Editorial: rituximab in the treatment of Sjögren's syndrome: is it the right or wrong drug[J]. Arthritis Rheumatol, 2017, 69(7): 1346-1349. doi: 10.1002/art.40095

    [24]

    CORNEC D, COSTA S, DEVAUCHELLE-PENSEC V, et al. Blood and salivary-gland BAFF-driven B-cell hyperactivity is associated to rituximab inefficacy in primary Sjögren's syndrome[J]. J Autoimmun, 2016, 67: 102-110. doi: 10.1016/j.jaut.2015.11.002

    [25]

    MARIETTE X, SEROR R, QUARTUCCIO L, et al. Efficacy and safety of belimumab in primary Sjögren's syndrome: results of the BELISS open-label phase Ⅱ study[J]. Ann Rheum Dis, 2015, 74(3): 526-531. doi: 10.1136/annrheumdis-2013-203991

    [26]

    QUARTUCCIO L, SALVIN S, CORAZZA L, et al. Efficacy of belimumab and targeting of rheumatoid factor-positive B-cell expansion in Sjögren's syndrome: follow-up after the end of the phase Ⅱ open-label BELISS study[J]. Clin Exp Rheumatol, 2016, 34(2): 311-314. http://smartsearch.nstl.gov.cn/paper_detail.html?id=abf10f5df1c3a2fde8589c36ac82b96f

    [27]

    DÖRNER T, POSCH M G, LI Y, et al. Treatment of primary Sjögren's syndrome with ianalumab (VAY736) targeting B cells by BAFF receptor blockade coupled with enhanced, antibody-dependent cellular cytotoxicity[J]. Ann Rheum Dis, 2019, 78(5): 641-647. doi: 10.1136/annrheumdis-2018-214720

    [28]

    SIEGER N, FLEISCHER S J, MEI H E, et al. CD22 ligation inhibits downstream B cell receptor signaling and Ca2+ flux upon activation[J]. Arthritis Rheum, 2013, 65(3): 770-779. doi: 10.1002/art.37818

    [29]

    STEINFELD S D, TANT L, BURMESTER G R, et al. Epratuzumab (humanised anti-CD22 antibody) in primary Sjögren's syndrome: an open-label phase Ⅰ/Ⅱ study[J]. Arthritis Res Ther, 2006, 8(4): R129. doi: 10.1186/ar2018

    [30]

    GOTTENBERG J E, DÖRNER T, BOOTSMA H, et al. Efficacy of epratuzumab, an anti-CD22 monoclonal IgG antibody, in systemic lupus erythematosus patients with associated Sjögren's syndrome: post hoc analyses from the EMBODY trials[J]. Arthritis Rheumatol, 2018, 70(5): 763-773. doi: 10.1002/art.40425

    [31]

    ALEVIZOS I, ZHENG C, COTRIM A P, et al. Late responses to adenoviral-mediated transfer of the aquaporin-1 gene for radiation-induced salivary hypofunction[J]. Gene Ther, 2017, 24(3): 176-186. doi: 10.1038/gt.2016.87

    [32]

    LAI Z, YIN H, CABRERA-PÉREZ J, et al. Aquaporin gene therapy corrects Sjögren's syndrome phenotype in mice[J]. PNAS, 2016, 113(20): 5694-5699. doi: 10.1073/pnas.1601992113

    [33]

    YIN H, CABRERA-PEREZ J, LAI Z, et al. Association of bone morphogenetic protein 6 with exocrine gland dysfunction in patients with Sjögren's syndrome and in mice[J]. Arthritis Rheum, 2013, 65(12): 3228-3238. http://www.ncbi.nlm.nih.gov/pubmed/23982860

    [34]

    XU J, SU Y, HU L, et al. Effect of bone morphogenetic protein 6 on immunomodulatory functions of salivary gland-derived mesenchymal stem cells in Sjögren's syndrome[J]. Stem Cells Dev, 2018, 27(22): 1540-1548. doi: 10.1089/scd.2017.0161

    [35]

    YIN H, KALRA L, LAI Z, et al. Inhibition of bone morphogenetic protein 6 receptors ameliorates Sjögren's syndrome in mice[J]. Sci Rep, 2020, 10(1): 2967. doi: 10.1038/s41598-020-59443-z

    [36]

    CORNETH O B J, VERSTAPPEN G M P, PAULISSEN S M J, et al. Enhanced bruton's tyrosine kinase activity in peripheral blood B lymphocytes from patients with autoimmune disease[J]. Arthritis Rheumatol, 2017, 69(6): 1313-1324. doi: 10.1002/art.40059

    [37]

    MUNAKATA W, ANDO K, HATAKE K, et al. Phase Ⅰ study of tirabrutinib (ONO-4059/GS-4059) in patients with relapsed or refractory B-cell malignancies in Japan[J]. Cancer Sci, 2019, 110(5): 1686-1694. doi: 10.1111/cas.13983

    [38]

    NAYAR S, CAMPOS J, SMITH C G, et al. Phosphatidylinositol 3-kinase delta pathway: a novel therapeutic target for Sjögren's syndrome[J]. Ann Rheum Dis, 2019, 78(2): 249-260. http://ard.bmj.com/content/78/2/249.full

    [39]

    ZENG M, SZYMCZAK M, AHUJA M, et al. Restoration of CFTR activity in ducts rescues acinar cell function and reduces inflammation in pancreatic and salivary glands of mice[J]. Gastroenterology, 2017, 153(4): 1148-1159. http://www.ncbi.nlm.nih.gov/pubmed/28634110/

    [40]

    SINTES J, VIDAL-LALIENA M, ROMERO X, et al. Characterization of mouse CD229(Ly9), a leukocyte cell surface molecule of the CD150(SLAM) family[J]. Tissue Antigens, 2007, 70(5): 355-362. doi: 10.1111/j.1399-0039.2007.00909.x

    [41]

    BRALEY-MULLEN H, YU S. NOD. H-2h4 mice: an important and underutilized animal model of autoimmune thyroiditis and Sjögren's syndrome[J]. Adv Immunol, 2015, 126: 1-43.

  • 期刊类型引用(1)

    1. 张帆,陈晓红,初乃惠,聂文娟. 含西他沙星的新的抗结核方案治疗准广泛耐药肺结核一例. 中国防痨杂志. 2024(11): 1410-1413 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-03-26
  • 网络出版日期:  2021-07-25
  • 发布日期:  2021-07-27

目录

/

返回文章
返回
x 关闭 永久关闭