Bioinformatics analysis of differentially expressed genes in thyroid cancer
-
摘要:目的 通过生物信息学方法筛选女性甲状腺癌(THCA)发生发展关键枢纽基因(Hub基因),探讨女性THCA发病机制。方法 根据性别将1 780例诊断为THCA患者分为男性组(n=300)和女性组(n=1 480)。通过GEO芯片数据集GSE29265获取2组甲状腺癌及正常组织数据信息。分别筛选出2组癌组织、相对正常组织的差异表达基因(DEGs);构建DEGs的蛋白互作网络,并筛选Hub基因;采用基因本体(GO)数据库及京都基因与基因组百科全书(KEGG)分析THCA女性组Hub基因。结果 分析发现女性THCA发病率是男性的4.93倍。女性组和男性组分别筛选出163个、165个差异表达为4倍以上的DEGs,以及分别筛选出10个、8个Hub基因,其中2组共有Hub基因4个,女性组特有Hub基因6个。女性组163个基因中,参与女性THCA生物学过程及相关信号通路的Hub基因有8个。结论 PROM1、EVA1A、PRSS23、ITGA2、NCAM1和KIT为女性THCA中特有的DEGs,其可能将成为女性THCA患者潜在的治疗靶点。Abstract:Objective To investigate the pathogenesis of thyroid carcinoma (THCA) in female, and screen Hub genes of THCA by bioinformatics.Methods A total of 1 780 patients diagnosed with THCA were divided into male group (n=300) and female group (n=1 480) according to gender. The data of thyroid cancer and normal tissue in two groups were obtained by GEO chip data set GSE29265. The differentially expressed genes (DEGs) in two groups of cancer tissues and relatively normal tissues were screened, respectively. The protein interaction network of DEGs was constructed and Hub genes were screened. Hub genes were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) in female group with THCA.Results The analysis found that the incidence of THCA in female was 4.93 times higher than that in male. In the female group and the male group, 163 and 165 DEGs with more than 4 fold difference were screened out, respectively, and ten as well as eight Hub genes were screened out, respectively, among which 4 Hub genes were found in two groups, and 6 Hub genes were unique in the female group. Among 163 genes in the female group, 8 Hub genes were involved in the biological process and related signaling pathways of female THCA.Conclusion PROM1, EVA1A, PRSS23, ITGA2, NCAM1 and KIT are the unique DEGs to female THCA patients, which may become potential therapeutic targets for female THCA patients.
-
表 1 不同性别THCA年龄分布比较[n(%)]
年龄 男性(n=300) 女性(n=1 480) 合计(n=1 780) χ2 P < 30岁 20(6.67) 93(6.28) 113(6.35) 0.062 0.804 30~39岁 30(10.00) 167(11.28) 197(11.07) 0.418 0.518 40~49岁 55(18.33) 394(26.62) 449(25.22) 9.085 0.003 50~59岁 114(38.00) 557(37.64) 671(37.69) 0.014 0.905 ≥60岁 81(27.00) 269(18.18) 350(19.66) 12.296 < 0.001 -
[1] SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34. doi: 10.3322/caac.21551
[2] 董芬, 张彪, 单广良. 中国甲状腺癌的流行现状和影响因素[J]. 中国癌症杂志, 2016, 26(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGAZ201601009.htm [3] HAUGEN B R, ALEXANDER E K, BIBLE K C, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer[J]. Thyroid, 2016, 26(1): 1-133. doi: 10.1089/thy.2015.0020
[4] ZANE M, PARELLO C, PENNELLI G, et al. Estrogen and thyroid cancer is a stem affair: a preliminary study[J]. Biomedecine Pharmacother, 2017, 85: 399-411. doi: 10.1016/j.biopha.2016.11.043
[5] RUBIO G A, CATANUTO P, GLASSBERG M K, et al. Estrogen receptor subtype expression and regulation is altered in papillary thyroid cancer after menopause[J]. Surgery, 2018, 163(1): 143-149. doi: 10.1016/j.surg.2017.04.031
[6] SCHULTEN H J, AL-MANSOURI Z, BAGHALLAB I, et al. Comparison of microarray expression profiles between follicular variant of papillary thyroid carcinomas and follicular adenomas of the thyroid[J]. BMC Genomics, 2015, 16(Suppl 1): S7. http://www.biomedcentral.com/1471-2164/16/S7/
[7] LIAO B C, LIU S, LIU J F, et al. Long noncoding RNA CTC inhibits proliferation and invasion by targeting miR-146 to regulate KIT in papillary thyroid carcinoma[J]. Sci Rep, 2020, 10(1): 4616. doi: 10.1038/s41598-020-61577-z
[8] TOMEI S, MAZZANTI C, MARCHETTI I, et al. C-KIT receptor expression is strictly associated with the biological behaviour of thyroid nodules[J]. J Transl Med, 2012, 10: 7. doi: 10.1186/1479-5876-10-7
[9] SHEN X, KAN S F, LIU Z, et al. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis[J]. Exp Cell Res, 2017, 352(1): 130-138. doi: 10.1016/j.yexcr.2017.02.003
[10] REN W W, LI D D, CHEN X, et al. MicroRNA-125b reverses oxaliplatin resistance in hepatocellular carcinoma by negatively regulating EVA1A mediated autophagy[J]. Cell Death Dis, 2018, 9(5): 547. doi: 10.1038/s41419-018-0592-z
[11] XIE H, HU J, PAN H, et al. Adenovirus vector-mediated FAM176A overexpression induces cell death in human H1299 non-small cell lung cancer cells[J]. BMB Rep, 2014, 47(2): 104-109. doi: 10.5483/BMBRep.2014.47.2.090
[12] LIN B Y, WEN J L, ZHENG C, et al. Eva-1 homolog A promotes papillary thyroid cancer progression and epithelial-mesenchymal transition via the Hippo signalling pathway[J]. J Cell Mol Med, 2020, 24(22): 13070-13080. doi: 10.1111/jcmm.15909
[13] ZHANG L, HUANG Y, LING J, et al. Is integrin subunit alpha 2 expression a prognostic factor for liver carcinoma A validation experiment based on bioinformatics analysis[J]. Pathol Oncol Res, 2019, 25(4): 1545-1552. doi: 10.1007/s12253-018-0551-0
[14] CHUANG Y C, WU H Y, LIN Y L, et al. Blockade of ITGA2 induces apoptosis and inhibits cell migration in gastric cancer[J]. Biol Proced Online, 2018, 20: 10. doi: 10.1186/s12575-018-0073-x
[15] GUZMÁN-RAMÍREZ N, VÖLLER M, WETTERWALD A, et al. In vitro propagation and characterization of neoplastic stem/progenitor-like cells from human prostate cancer tissue[J]. Prostate, 2009, 69(15): 1683-1693. doi: 10.1002/pros.21018
[16] HAIDARI M, ZHANG W, CAIVANO A, et al. Integrin α2β1 mediates tyrosine phosphorylation of vascular endothelial cadherin induced by invasive breast cancer cells[J]. J Biol Chem, 2012, 287(39): 32981-32992. doi: 10.1074/jbc.M112.395905
[17] CHERNAYA G, MIKHNO N, KHABALOVA T, et al. The expression profile of integrin receptors and osteopontin in thyroid malignancies varies depending on the tumor progression rate and presence of BRAF V600E mutation[J]. Surg Oncol, 2018, 27(4): 702-708. doi: 10.1016/j.suronc.2018.09.007
[18] SASCA D, SZYBINSKI J, SCHVLER A, et al. NCAM1 (CD56) promotes leukemogenesis and confers drug resistance in AML[J]. Blood, 2019, 133(21): 2305-2319. doi: 10.1182/blood-2018-12-889725
[19] SONG T N, ZHOU H, WEI X P, et al. Downregulation of microRNA-324-3p inhibits lung cancer by blocking the NCAM1-MAPK axis through ALX4[J]. Cancer Gene Ther, 2020: 1-16. http://www.nature.com/articles/s41417-020-00231-2
[20] GOLU I, VLAD M M, DEMA A, et al. The absence of CD56 expression can differentiate papillary thyroid carcinoma from other thyroid lesions[J]. Indian J Pathol Microbiol, 2017, 60(2): 161-166. doi: 10.4103/0377-4929.208378
[21] LIOU G Y. CD133 as a regulator of cancer metastasis through the cancer stem cells[J]. Int J Biochem Cell Biol, 2019, 106: 1-7. doi: 10.1016/j.biocel.2018.10.013
[22] GLUMAC P M, LEBEAU A M. The role of CD133 in cancer: a concise review[J]. Clin Transl Med, 2018, 7(1): 18.
[23] WANG Z L, LIU W, WANG C, et al. Acetylcholine promotes the self-renewal and immune escape of CD133+ thyroid cancer cells through activation of CD133-Akt pathway[J]. Cancer Lett, 2020, 471: 116-124. doi: 10.1016/j.canlet.2019.12.009
[24] CHAN H S, CHANG S J, WANG T Y, et al. Serine protease PRSS23 is upregulated by estrogen receptor α and associated with proliferation of breast cancer cells[J]. PLoS One, 2012, 7(1): e30397. doi: 10.1371/journal.pone.0030397
[25] HAN B, YANG Y, CHEN J, et al. PRSS23 knockdown inhibits gastric tumorigenesis through EIF2 signaling[J]. Pharmacol Res, 2019, 142: 50-57. doi: 10.1016/j.phrs.2019.02.008
[26] MARTINI M, DE SANTIS M C, BRACCINI L, et al. PI3K/AKT signaling pathway and cancer: an updated review[J]. Ann Med, 2014, 46(6): 372-383. doi: 10.3109/07853890.2014.912836
[27] XIA P, XU X Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application[J]. Am J Cancer Res, 2015, 5(5): 1602-1609. http://www.ncbi.nlm.nih.gov/pubmed/26175931