Research progress in role and mechanism of circular RNA in osteoporosis
-
摘要: 随着人口老龄化程度的加剧,老年人骨质疏松症患病率逐年升高,骨质疏松症已成为全世界面临的重要公共卫生问题之一。近年来临床对骨质疏松症的研究多集中于成骨细胞、破骨细胞方面,而对其机制研究甚少。环状RNA是一种新型的稳定的非编码RNA,已有不少研究证实其在骨质疏松中起着重要作用。本文以"骨质疏松症""环状RNA"为主题词检索中国知网、万方、Pubmed、Embase等数据库,将国内外关于环状RNA对骨质疏松症的作用及机制的研究进展综述如下。Abstract: With the aggravation of population aging, the prevalence of osteoporosis in the elderly is increasing year by year. Osteoporosis has become one of the most important public health problems in the world. In recent years, the clinical researches on osteoporosis mainly focus on osteoblasts and osteoclasts, but the mechanism is rarely studied. Circular RNA is a new stable non-coding RNA, which has been confirmed in lots of studies to play an important role in osteoporosis. In this paper, we searched the databases such as CNKI, Wanfang, PubMed and EMBASE with the key words of "osteoporosis" and "circular RNA", and summarized the research progress on role and mechanism of circular RNA on osteoporosis at home and abroad.
-
Keywords:
- osteoporosis /
- circular RNA /
- osteoblast /
- osteoclast
-
慢性萎缩性胃炎(CAG)是一种由多种原因引起的胃部疾病, 胃黏膜发生慢性炎症反应,同时有腺体萎缩的病理表现,甚至出现更严重的细胞学改变,如肠化、异型增生等,属于癌前疾病[1]。电子胃镜检查在消化疾病诊疗中的应用越来越普遍, CAG的检出率大幅提升[2]。目前西医主要应用质子泵抑制剂(PPI)类抑酸药如奥美拉唑、雷贝拉唑等进行治疗,该类药与H-K-ATP酶结合,抑制胃酸分泌,或同时应用多潘立酮等促进胃肠动力的药物,或补充微量元素、加强黏膜营养等,症状虽有改善,但对CAG胃黏膜的病理改变及CAG引起的胃肠功能障碍疗效不明显[3]。中医药治疗CAG不仅能够改善症状,而且可以延缓病情进展,在逆转病理表现方面,优势也愈发明显[4]。本研究应用中药汤剂化浊通清饮治疗CAG浊毒内蕴证,探讨其对胃黏膜病理的影响,现报告如下。
1. 资料与方法
1.1 一般资料
选择2021年6月—2022年1月在河北省中医院脾胃病科门诊及病房就诊的159例CAG患者为研究对象,随机分为中药组、西药组和对照组,每组53例。中药组男27例,女26例,年龄25~69岁,平均(51.13±8.36)岁; 平均病程为(4.51±0.63)年; 男性平均体质量(72.67±15.94) kg, 女性平均体质量(61.59±12.75)kg。西药组男24例,女29例,年龄26~68岁,平均(49.62±7.97)岁; 平均病程为(4.36±0.61)年; 男性平均体质量(73.51±14.74) kg, 女性平均体质量(59.46±14.25) kg。对照组男25例,女28例,年龄26~70岁,平均(50.87±8.19)岁; 平均病程为(4.27±0.59)年; 男性平均体质量(71.36±16.27) kg, 女性平均体质量(62.84±13.41) kg。3组患者一般资料比较,差异无统计学意义(P>0.05), 具有可比性。
西医CAG诊断参照《中国慢性胃炎共识意见(2017年,上海)》[5]。中医证型浊毒内蕴证标准参照《慢性萎缩性胃炎中医诊疗共识意见》[6], 诊断需要包括主症中的任意2项、次症中的任意2项。主症: ①胃胀不舒; ②烧心反酸; ③胃脘疼痛; ④嗳气。次症: ①嘈杂; ②口干苦; ③恶心欲吐; ④便黏; ⑤纳差。此外,还应兼有舌质暗红或红,且苔黄、厚或腻,脉弦或滑表现。纳入标准: ①年龄25~70岁者; ②符合CAG西医及中医诊断标准者; ③了解研究方案并在知情同意书上签字者; ④无肝肾及心脑血管严重疾病者。排除标准: ①有胃出血、胃穿孔、胃恶性肿瘤及其他严重的胃部疾病者; ②对本研究中包含的药物过敏者; ③妊娠期或哺乳期妇女; ④有精神障碍者。
1.2 方法
对照组口服摩罗丹浓缩丸(邯郸制药股份有限公司,国药准字Z20090013), 1袋/次, 3次/d。西药组口服雷贝拉唑钠肠溶片[双鹤药业(海南)有限责任公司,国药准字H20110160], 10 mg/次, 1次/d。中药组口服化浊通清饮,组方为: 败酱草9 g, 蒲公英12 g, 砂仁6 g, 藿香12 g, 大腹皮9 g, 鸡骨草20 g, 石菖蒲15 g, 白梅花5 g, 佛手9 g, 娑罗子9 g, 大血藤9 g, 炒栀子10 g, 玫瑰花6 g, 香橼12 g, 炒莱菔子12 g。随症加减: 胃胀不舒甚者加枳实12 g; 胃痛甚者予延胡索12 g; 口干苦明显者予石斛9 g、麦冬9 g; 反酸烧心明显者予海螵蛸9 g; 纳差者加焦麦芽10 g、炒鸡内金12 g。水煎取汁300 mL, 分2次服用,1剂/d。
1.3 观察指标
① 胃黏膜病理组织学评分根据《中国慢性胃炎共识意见(2017年,上海)》[5], 按无(0分)、轻度(2分)、中度(4分)、重度(6分)进行评分。②中医证候评分[7]根据胃胀不舒、烧心反酸、胃脘疼痛、便黏及嗳气等症状的轻重程度进行计分,轻度2分,中度4分,重度6分。③简明健康状况调查量表(SF-36)评分[8],该量表包括8个维度、36个条目,总分100分,分数与生活质量呈正比。④采用酶联免疫吸附法(ELISA)检测血清胃泌素-17(G-17)和前列腺素E2(PGE2)水平。
1.4 疗效判定
根据《中药新药临床研究指导原则(试行)》[9]拟定疗效标准,分为痊愈、显效、有效及无效共4个等级。痊愈: 无临床不适症状,胃镜及病理检查无异常; 显效: 临床症状明显改善,胃镜下所见胃黏膜病变显著好转,显微镜下(病理)胃黏膜异常改变消失或减轻2级以上; 有效: 临床症状较前改善,胃镜下所见胃黏膜病变减少(减幅1/2以上),显微镜下(病理)胃黏膜异常改变较前减轻(减轻≥1级); 无效: 临床症状无好转,胃镜及显微镜下(病理)胃黏膜无改善。总有效率=痊愈率+显效率+有效率。
1.5 统计学方法
采用SPSS 22.0软件进行统计分析,计数资料采用[n(%)]表示,比较行χ2检验; 计量资料采用均值±标准差表示,比较行t检验。P < 0.05为差异有统计学意义。
2. 结果
2.1 3组临床疗效比较
中药组、西药组、对照组治疗总有效率依次为92.45%、62.26%和66.04%, 中药组高于西药组、对照组,差异有统计学意义(P < 0.05)。见表 1。
表 1 3组患者临床疗效比较[n(%)]组别 n 痊愈 显效 有效 无效 总有效 中药组 53 13(24.53) 24(45.28) 12(22.64) 4(7.55) 49(92.45) 西药组 53 3(5.66) 12(22.64) 18(33.96) 20(37.74) 33(62.26)* 对照组 53 6(11.32) 19(35.85) 10(18.87) 18(33.96) 35(66.04)* 与中药组比较, * P < 0.05。 2.2 3组胃黏膜病理组织学评分比较
与治疗前比较,各组治疗后腺体萎缩、肠上皮化生、异型增生、慢性炎症评分降低,且中药组上述评分低于对照组和西药组,差异有统计学意义(P < 0.05)。见表 2。
表 2 3组患者胃黏膜病理组织学评分比较(x±s)分 组别 n 时点 腺体萎缩 肠上皮化生 异型增生 慢性炎症 中药组 53 治疗前 4.31±0.63 3.36±0.83 2.48±0.56 4.56±0.75 治疗后 1.59±0.52* 1.28±0.66* 1.17±0.29* 1.62±0.41* 西药组 53 治疗前 4.25±0.61 3.29±0.81 2.43±0.48 4.55±0.68 治疗后 3.23±0.56*# 2.87±0.69*# 2.25±0.44# 2.63±0.46*# 对照组 53 治疗前 4.27±0.65 3.34±0.78 2.46±0.54 4.53±0.74 治疗后 2.91±0.48*# 2.16±0.53*# 1.91±0.31*# 2.77±0.53*# 与治疗前比较, * P < 0.05; 与中药组比较, #P < 0.05。 2.3 3组中医证候评分比较
治疗3个月后, 3组胃脘疼痛、胃胀不舒、反酸烧心、嗳气、便黏评分均低于治疗前,且中药组胃脘疼痛、胃胀不舒、反酸烧心、嗳气、便黏评分低于对照组和西药组,差异有统计学意义(P < 0.05)。见表 3。
表 3 3组患者治疗前后中医证候评分比较(x±s)分 组别 n 时点 胃脘疼痛 胃胀不舒 反酸烧心 嗳气 便黏 中药组 53 治疗前 4.36±0.61 4.59±0.73 3.27±0.56 3.41±0.48 2.97±0.64 治疗后 1.22±0.32* 1.43±0.43* 0.94±0.26* 1.18±0.33* 0.76±0.21* 西药组 53 治疗前 4.31±0.55 4.46±0.64 3.21±0.58 3.37±0.52 2.91±0.67 治疗后 2.19±0.36*# 2.76±0.51*# 1.59±0.31*# 2.48±0.46*# 2.25±0.73*# 对照组 53 治疗前 4.33±0.58 4.58±0.72 3.25±0.53 3.42±0.45 2.94±0.63 治疗后 2.24±0.38*# 2.32±0.49*# 1.68±0.35*# 2.06±0.41*# 1.57±0.38*# 与治疗前比较, * P < 0.05; 与中药组比较, #P < 0.05。 2.4 3组SF-36评分比较
3组患者治疗后1、2、3个月SF-36评分较治疗前均提高,且中药组SF-36评分高于对照组和西药组,随访时中药组评分仍高于对照组和西药组,差异有统计学意义(P < 0.05)。见表 4。
表 4 3组患者治疗前后SF-36评分比较(x±s)分 组别 n 治疗前 治疗1个月 治疗2个月 治疗3个月 随访时 中药组 53 49.68±6.46 61.32±7.11* 74.15±9.51* 85.33±10.72* 86.47±10.54* 西药组 53 51.09±6.74 56.67±6.58*# 61.84±7.82*# 68.76±8.54*# 62.86±6.43*# 对照组 53 50.34±6.93 55.42±7.57*# 63.46±8.64*# 71.59±9.43*# 65.92±9.36*# SF-36: 生活质量量表。与治疗前比较, * P < 0.05; 与中药组比较, #P < 0.05。 2.5 3组血清G-17和PGE2水平比较
治疗后, 3组患者血清G-17和PGE2水平均较治疗前升高,且中药组血清G-17和PGE2水平高于西药组和对照组,差异有统计学意义(P < 0.05)。见表 5。3组患者治疗期间均无不良反应发生。
表 5 3组患者治疗前后血清G-17和PGE2比较(x±s)组别 n 时点 G-17/(pmol/L) PGE2/(ng/mL) 中药组 53 治疗前 4.23±0.66 2.76±0.43 治疗后 11.08±1.73* 7.01±0.55* 西药组 53 治疗前 4.18±0.67 2.75±0.44 治疗后 6.57±0.81*# 3.96±0.43*# 对照组 53 治疗前 4.21±0.64 2.78±0.41 治疗后 7.14±0.92*# 4.97±0.48*# G-17: 胃泌素-17; PGE2: 前列腺素E2。
与治疗前比较, * P < 0.05; 与中药组比较, #P < 0.05。3. 讨论
CAG患者缺乏特异性临床表现,易出现各种消化不良症状,如胃胀不舒、嗳气、胃脘疼痛、恶心、大便黏腻等,其病因包括生物因素(Hp感染)、化学因素(非甾体抗炎药)、物理因素(咖啡、浓茶等)、免疫遗传因素等[10], 各种危险因子反复损伤胃黏膜表面,导致胃黏膜内炎性细胞浸润,胃黏膜充血水肿,出现慢性炎症反应,进一步发展为腺体萎缩减少、胃黏膜变薄,导致黏膜下血管显露,胃蠕动功能障碍,即CAG, 并可能进展为肠上皮化生(胃正常细胞被杯状细胞代替)或异型增生。该病早期症状不明显、不被重视,患者多因症状加重或迁延不愈就诊,导致癌变风险加大,治疗周期延长[11]。
近年来,中医药在治疗CAG方面应用广泛。CAG可归于中医“痞满”“胃脘痛”“心下痞”“嘈杂”等范畴[12]。CAG病位在胃腑,与脾脏功能密不可分。《黄帝内经·经脉别论》曰: “饮入于胃,游溢精气,上输于脾,脾气散精……水精四布,五精并行,合于四时五脏之阴阳,揆度以为常也。”脾胃互助,输布胃之津液,全身脏器得到濡养。脾脏和胃腑同居中焦,是气血生化之源,亦被称为后天之本。脾脏主运化,脾气以升为健。胃腑主受纳,胃气以和降为顺。《素问·阴阳应象大论》记载: “清气在下,则生飧泄,浊气在上,则生(月真)胀。”脾脏和胃腑相辅相成,同时也相互影响。本研究认为,浊毒内蕴是导致CAG发病的重要机制,饥饱不定、情志欠佳及外邪入侵等因素,可致脾胃受纳运化功能受损,日久湿浊热毒蕴于中焦,固结不散,以致气滞络瘀,血不养经,胃腑缺乏滋养,使胃黏膜炎症、萎缩及肠化等病变相继出现。根据以上病机组方化浊通清饮: 败酱草可清热解毒破瘀,味辛、苦,其性微寒[13], 其中的有效成分具有抗炎、抗菌的作用,对胃肠道疾病如慢性胃炎、炎症性肠病等有明显疗效; 蒲公英能够清热解毒、利湿消肿[14], 有抗炎、抗氧化、抗肿瘤、改善胃肠功能等作用; 砂仁化浊理气开胃[15], 可减轻炎症,促进胃黏膜修复,改善胃肠蠕动功能; 藿香可化浊和中止呕[16], 其醇提物能够调控核因子-kB(NF-kB)信号通路,抑制炎症反应,减轻小鼠胃黏膜损伤,促进受损的胃黏膜得到修复; 鸡骨草可清热利湿止痛,具有抗肿瘤、抗氧化、抑制幽门螺旋杆菌及抗炎等作用[17]; 大腹皮宽中下气,能够增加胃肠激素的分泌,兴奋迷走神经,改善胃肠动力[18]; 石菖蒲归心、胃经,具有化湿理气活血以及健胃、抑制胃肠痉挛等作用[19]; 大血藤味苦、平,具有清热活血止痛功效; 白梅花、玫瑰花能疏肝和胃,散结止痛; 香橼、娑罗子及佛手可理气行滞、和胃宽中; 炒栀子清热利湿、凉血除烦; 炒莱菔子降气除胀; 全方治疗以清热化浊、解毒和胃为主,以行气活血宽中为辅,可使浊毒化解,气血畅达,促进脾胃升降功能恢复正常,胃络得以濡养,从而达到改善腺体萎缩、逆转肠化和异型增生的功效。
本研究结果显示,化浊通清饮治疗CAG后,中药组治疗总有效率高于西药组和对照组; 治疗后,中药组在改善胃脘疼痛、胃胀不舒、反酸烧心、嗳气及便黏等中医证候评分方面较西药组和对照组效果更加显著。3组患者胃黏膜病理组织学评分在治疗3个月时显著降低,表明患者胃黏膜病理情况较前明显改善,且中药组对患者胃黏膜的萎缩、肠化、异型增生及慢性炎症的改善程度更显著。中药组、西药组和对照组在治疗1、2、3个月后生活质量均有提高,且中药组显著优于西药组和对照组; 在治疗结束3个月后的随访中,中药组患者症状无明显反复,生活质量评分较高。由此可见,化浊通清饮治疗CAG能够改善临床症状,逆转病理改变,提高患者整体生活质量,且其长期疗效明显,降低了CAG的复发率。
G-17是一种可调节胃酸分泌的胃肠激素,由胃窦部G细胞产生,胃黏膜生长与其密切相关,当患有CAG时,胃窦部G细胞总数变少,血清G-17含量下降,因而可有效评估CAG的病变程度。PGE2是胃肠道十分重要的调控因子,能刺激胃黏膜产生黏液和碳酸氢盐,并且可调控胃酸-胃蛋白酶原的分泌,改善胃黏膜血流,使胃黏膜细胞不断更新,从而促进胃黏膜修复, CAG患者机体的PGE2水平较正常人群明显降低。本研究结果显示,治疗后3组患者G-17和PGE2均较治疗前增加,但中药组增加更明显,表明应用化浊通清饮治疗慢性萎缩性胃炎可增加PGE2分泌,从而促进胃黏膜修复,同时G-17的分泌水平得到提高,进而改善胃黏膜病理状态。
-
表 1 circRNA在骨髓间充质干细胞向成骨细胞分化中的作用
circRNA 表达高低 成骨作用 miRNA海绵 下游靶基因 参考文献 hsa-circ-0076690 上调 促进 miRNA-152下调 RUNX2上调 [19] hsa-circ-0026827 上调 促进 miR-188-3p下调 Beclin1、RUNX1上调 [20] hsa-circ-0001275 上调 促进 miR-422a下调 CD226上调 [32] circRNA13685(circIGSF11) 下调 抑制 miR-199B-5p上调 Gsk-3β/β-catenin上调 [21]、[22] CDR1as(CIRS-7) 上调 促进 miR-7下调 GDF5、Smad、P38、MAPK上调 [16]、[23] circ-0024097 上调 促进 miR-376b下调 YAP1、Wnt/β-catenin上调 [24] circRNA436 下调 抑制 miR-335上调 Wnt/β-catenin上调 [26]、[30] circ-0006393 上调 促进 miR-145-5p下调 FOXO1、RUNX2、OSX、ALP上调 [31] circRNA-0016624 上调 促进 miR-98下调 BMP-2上调 [29] circ-0076906 上调 促进 miR-1305下调 OGN上调 [27] circ-0011269 上调 促进 miR-122下调 RUNX2上调 [28] circ-SLC8A1 下调 抑制 miR-516b-5p上调 AKAP2下调 [25] 表 2 circRNA在骨髓单核/巨噬细胞向破骨细胞分化中的作用
circRNA 表达高低 破骨作用 miRNA海绵 下游靶基因 参考文献 circRNA-28313 上调 促进 miR-195a下调 CSF1下调 [33] circRNA-005108 下调 抑制 miR-31上调 RhoA下调 [34]、[35] circ-0007059 下调 抑制 miR-378上调 BMP-2下调 [36] circRNA- 009934 上调 促进 miR-5107下调 TRAF6上调 [37] hsa-circ-0002922 上调 促进 hsa-miR-181b-5p下调 MAP2K1下调 [38] hsa-circ-0007710 上调 促进 hsa-miR-197-3p下调 MAPK1下调 [38] -
[1] COMPSTON J E, MCCLUNG M R, LESLIE W D. Osteoporosis[J]. Lancet, 2019, 393(10169): 364-376. doi: 10.1016/S0140-6736(18)32112-3
[2] TANAKA S. RANKL-independent osteoclastogenesis: a long-standing controversy[J]. J Bone Miner Res, 2017, 32(3): 431-433. doi: 10.1002/jbmr.3092
[3] HRDLICKOVA R, TOLOUE M, TIAN B. RNA-Seq methods for transcriptome analysis[J]. Wiley Interdiscip Rev RNA, 2017, 8(1): 10-10.
[4] CHEN L L, YANG L. Regulation of circRNA biogenesis[J]. RNA Biol, 2015, 12(4): 381-388. doi: 10.1080/15476286.2015.1020271
[5] JECK W R, SORRENTINO J A, WANG K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157. doi: 10.1261/rna.035667.112
[6] CHEN L L. The biogenesis and emerging roles of circular RNAs[J]. Nat Rev Mol Cell Biol, 2016, 17(4): 205-211. doi: 10.1038/nrm.2015.32
[7] PATOP I L, WVST S, KADENER S. Past, present, and future of circRNAs[J]. Embo J, 2019, 38(16): e100836. http://www.ncbi.nlm.nih.gov/pubmed/31343080
[8] WANG Y, MO Y, GONG Z, et al. Circular RNAs in human cancer[J]. Mol Cancer, 2017, 16(1): 25-25. doi: 10.1186/s12943-017-0598-7
[9] KRISTENSEN L S, ANDERSEN M S, STAGSTED L V W, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11): 675-691. doi: 10.1038/s41576-019-0158-7
[10] QU S, YANG X, LI X, et al. Circular RNA: a new star of noncoding RNAs[J]. Cancer Lett, 2015, 365(2): 141-148. doi: 10.1016/j.canlet.2015.06.003
[11] SUN Z, CHEN C, SU Y, et al. Regulatory mechanisms and clinical perspectives of circRNA in digestive system neoplasms[J]. J Cancer, 2019, 10(13): 2885-2891. doi: 10.7150/jca.31167
[12] GUARNERIO J, BEZZI M, JEONG J C, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations[J]. Cell, 2016, 165(2): 289-302. doi: 10.1016/j.cell.2016.03.020
[13] LI J, YANG J, ZHOU P, et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications[J]. Am J Cancer Res, 2015, 5(2): 472-480. http://pubmedcentralcanada.ca/pmcc/articles/PMC4396047/?report=abstract
[14] ZHAO K W, ZHAO Q, GUO Z D, et al. Hsa_Circ_0001275: a potential novel diagnostic biomarker for postmenopausal osteoporosis[J]. Cell Physiol Biochem, 2018, 46(6): 2508-2516. doi: 10.1159/000489657
[15] HUANG Y, XIE J, LI E. Comprehensive circular RNA profiling reveals circ_0002060 as a potential diagnostic biomarkers for osteoporosis[J]. J Cell Biochem, 2019, 120(9): 15688-15694. doi: 10.1002/jcb.28838
[16] HANSEN T B, JENSEN T I, CLAUSEN B H, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-388. doi: 10.1038/nature11993
[17] KULCHESKI F R, CHRISTOFF A P, MARGIS R. Circular RNAs are miRNA sponges and can be used as a new class of biomarker[J]. J Biotechnol, 2016, 238: 42-51. doi: 10.1016/j.jbiotec.2016.09.011
[18] PANDA A C. Circular RNAs act as miRNA sponges[J]. Adv Exp Med Biol, 2018, 1087: 67-79. http://www.ncbi.nlm.nih.gov/pubmed/30259358
[19] HAN S, KUANG M, SUN C, et al. Circular RNA hsa_circ_0076690 acts as a prognostic biomarker in osteoporosis and regulates osteogenic differentiation of hBMSCs via sponging miR-152[J]. Aging (Albany N Y), 2020, 12(14): 15011-15020.
[20] JI F, ZHU L, PAN J, et al. hsa_circ_0026827 promotes osteoblast differentiation of human dental pulp stem cells through the Beclin1 and RUNX1 signaling pathways by sponging miR-188-3p[J]. Front Cell Dev Biol, 2020, 8: 470. doi: 10.3389/fcell.2020.00470
[21] ZHANG M, JIA L, ZHENG Y. circRNA expression profiles in human bone marrow stem cells undergoing osteoblast differentiation[J]. Stem Cell Rev Rep, 2019, 15(1): 126-138. doi: 10.1007/s12015-018-9841-x
[22] ZHAO R, LI Y, LIN Z, et al. miR-199b-5p modulates BMSC osteogenesis via suppressing GSK-3β/β-catenin signaling pathway[J]. Biochem Biophys Res Commun, 2016, 477(4): 749-754. doi: 10.1016/j.bbrc.2016.06.130
[23] LI X, ZHENG Y, ZHENG Y, et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway[J]. Stem Cell Res Ther, 2018, 9(1): 232. doi: 10.1186/s13287-018-0976-0
[24] HUANG Y, XIAO D, HUANG S, et al. Circular RNA YAP1 attenuates osteoporosis through up-regulation of YAP1 and activation of Wnt/β-catenin pathway[J]. Biomed Pharmacother, 2020, 129: 110365. doi: 10.1016/j.biopha.2020.110365
[25] LIN C, ZHONG W, YAN W, et al. Circ-SLC8A1 regulates osteoporosis through blocking the inhibitory effect of miR-516b-5p on AKAP2 expression[J]. J Gene Med, 2020, 22(11): e3263. doi: 10.1002/jgm.3263
[26] WANG H, FENG C, JIN Y, et al. Identification and characterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells[J]. J Cell Physiol, 2019, 234(7): 10166-10177. doi: 10.1002/jcp.27686
[27] WEN J, GUAN Z, YU B, et al. Circular RNA hsa_circ_0076906 competes with OGN for miR-1305 biding site to alleviate the progression of osteoporosis[J]. Int J Biochem Cell Biol, 2020, 122: 105719. doi: 10.1016/j.biocel.2020.105719
[28] XU X Q, CHEN Y, TAN B Y, et al. Circular RNA circ_0011269 sponges miR-122 to regulate RUNX2 expression and promotes osteoporosis progression[J]. J Cell Biochem, 2020, 121(12): 4819-4826. doi: 10.1002/jcb.29709
[29] YU L, LIU Y. circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis[J]. Biochem Biophys Res Commun, 2019, 516(2): 546-550. doi: 10.1016/j.bbrc.2019.06.087
[30] ZHANG L, TANG Y, ZHU X, et al. Overexpression of miR-335-5p promotes bone formation and regeneration in mice[J]. J Bone Miner Res, 2017, 32(12): 2466-2475. doi: 10.1002/jbmr.3230
[31] ZHANG Y, XIONG Y, ZHOU J, et al. FoxO1 expression in osteoblasts modulates bone formation through resistance to oxidative stress in mice[J]. Biochem Biophys Res Commun, 2018, 503(3): 1401-1408. doi: 10.1016/j.bbrc.2018.07.055
[32] 赵可伟. 绝经后骨质疏松环状RNA表达谱研究及潜在分子标志物筛选[D]. 广州: 南方医科大学, 2017. [33] CHEN X, OUYANG Z, SHEN Y, et al. CircRNA_28313/miR-195a/CSF1 axis modulates osteoclast differentiation to affect OVX-induced bone absorption in mice[J]. RNA Biol, 2019, 16(9): 1249-1262. doi: 10.1080/15476286.2019.1624470
[34] DOU C, CAO Z, YANG B, et al. Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis[J]. Sci Rep, 2016, 6: 21499. doi: 10.1038/srep21499
[35] MIZOGUCHI F, MURAKAMI Y, SAITO T, et al. miR-31 controls osteoclast formation and bone resorption by targeting RhoA[J]. Arthritis Res Ther, 2013, 15(5): R102. doi: 10.1186/ar4282
[36] LIU S, WANG C, BAI J, et al. Involvement of circRNA_0007059 in the regulation of postmenopausal osteoporosis by promoting the microRNA-378/BMP-2 axis[J]. Cell Biol Int, 2021, 45(2): 447-455. doi: 10.1002/cbin.11502
[37] MIAO F, YIN B H, ZHANG X, et al. CircRNA_009934 induces osteoclast bone resorption via silencing miR-5107[J]. Eur Rev Med Pharmacol Sci, 2020, 24(14): 7580-7588. http://www.researchgate.net/publication/343427071_CircRNA_009934_induces_osteoclast_bone_resorption_via_silencing_miR-5107
[38] LIN J B, MA S F, ZHU C, et al. Circular RNA atlas in osteoclast differentiation with and without alendronate treatment[J]. J Orthop Surg Res, 2020, 15(1): 240. doi: 10.1186/s13018-020-01722-6
[39] XIANG S K, WU Y, SHI H, et al. Circular RNA hsa_circ_0001445 in plasma as a novel biomarker for osteoporosis in postmenopausal women[J]. Biomarkers Med, 2020, 14(16): 1599-1607. doi: 10.2217/bmm-2020-0447
[40] CHEN X, WANG Z Q, DUAN N, et al. Osteoblast-osteoclast interactions[J]. Connect Tissue Res, 2018, 59(2): 99-107. doi: 10.1080/03008207.2017.1290085
[41] HAN B, CHAO J, YAO H. Circular RNA and its mechanisms in disease: From the bench to the clinic[J]. Pharmacol Ther, 2018, 187: 31-44. doi: 10.1016/j.pharmthera.2018.01.010
[42] HE T, LIU W, CAO L, et al. CircRNAs and LncRNAs in osteoporosis[J]. Differentiation, 2020, 116: 16-25. doi: 10.1016/j.diff.2020.10.002
计量
- 文章访问数: 412
- HTML全文浏览量: 199
- PDF下载量: 39