分子检测在甲状腺结节诊断中的研究进展

杨雅静, 汪耘吉, 冯尚勇

杨雅静, 汪耘吉, 冯尚勇. 分子检测在甲状腺结节诊断中的研究进展[J]. 实用临床医药杂志, 2021, 25(2): 112-116, 121. DOI: 10.7619/jcmp.20201005
引用本文: 杨雅静, 汪耘吉, 冯尚勇. 分子检测在甲状腺结节诊断中的研究进展[J]. 实用临床医药杂志, 2021, 25(2): 112-116, 121. DOI: 10.7619/jcmp.20201005
YANG Yajing, WANG Yunji, FENG Shangyong. Research progress of molecular detection in diagnosis of thyroid nodule[J]. Journal of Clinical Medicine in Practice, 2021, 25(2): 112-116, 121. DOI: 10.7619/jcmp.20201005
Citation: YANG Yajing, WANG Yunji, FENG Shangyong. Research progress of molecular detection in diagnosis of thyroid nodule[J]. Journal of Clinical Medicine in Practice, 2021, 25(2): 112-116, 121. DOI: 10.7619/jcmp.20201005

分子检测在甲状腺结节诊断中的研究进展

基金项目: 

江苏省扬州市重点研发计划—社会发展项目 YZ2015055

详细信息
    通讯作者:

    冯尚勇, E-mail: syfeng2003@163.com

  • 中图分类号: Q451;Q343.1

Research progress of molecular detection in diagnosis of thyroid nodule

  • 摘要: 甲状腺结节(TN)是一种临床上常见的内分泌系统疾病,超声检出率可达20%~76%。明确TN病理性质对于临床选择合适的治疗方案具有重要意义。超声引导下细针穿刺(US-FNA)是TN术前鉴别诊断的金标准,美国甲状腺学会建议对直径大于1 cm的结节行US-FNA, 由于US-FNA具有一定的局限性,仍有部分样本不能被明确诊断,给临床治疗带来困难。研究表明,对细针穿刺(FNA)样本进行分子检测能在一定程度上弥补细胞病理学诊断的不足。本文就分子标志物对TN诊断及预后评估相关进展的研究进行综述。
    Abstract: Thyroid nodule (TN) is a common endocrine disease in clinic, and the detection rate of ultrasound is ranging from 20% to 76%. It is of great significance to clarifythe pathological properties of TN for clinical selection of appropriate treatment. Ultrasound-guided fine-needle aspiration (US-FNA) is the gold standard for preoperative differential diagnosis of TN. The American Thyroid Association (ATA) recommends US-FNA for nodules with a diameter greater than 1 cm. Due to the limitations of US-FNA, the nature of US-FNA can not be clearly diagnosed in some samples, which brings difficulties to clinical treatment. Studies have shown that molecular testing for fine needle aspiration (FNA) samples can make up for the lack of cytopathological diagnosis to a certain extent. This article reviewed the progress of molecular markers in TN diagnosis and prognosis assessment.
  • 急性脑梗死是临床常见缺血性脑血管疾病,指脑供血突然中断,使脑组织坏死。急性脑梗死危害性较大,易合并缺氧、酸中毒和休克症状,导致凝血功能紊乱和凝血系统异常激活[1]。研究[2]认为,血小板水平、D-二聚体、纤维蛋白原等凝血相关指标是评价脑梗死患者病情和预后的重要指标。血栓弹力图(TEG)能够对血凝块的形成过程、形成强度、速度和血凝块的稳定性进行检测,可反映血液凝固和溶解的全过程[3-4]。本研究探讨常规凝血检测与TEG联合检测对评估急性脑梗死患者近期预后的价值,现报告如下。

    选取2019年7月—2020年7月收治的86例急性脑梗死患者,根据患者脑梗死复发情况将患者分为对照组(预后不良)和观察组(预后良好),每组43例。纳入标准: ①均符合相关诊断标准者; ②均为首次发病者; ③均于发病2周内入院者。排除标准: ①患血液系统疾病者; ②抗凝药物用药史患者; ③肝、肾等重要器官功能障碍者; ④ 2周内有外伤史或外科手术史者。对照组男29例,女14例; 年龄24~71岁,平均(58.74±3.81)岁; 体质量指数(BMI)21~28 kg/m2, 平均(24.69±2.73) kg/m2; 有吸烟史13例; 高血压29例,冠心病12例,糖尿病16例。观察组男30例,女13例;年龄25~72岁,平均(59.35±3.92)岁; BMI 21~27 kg/m2, 平均(24.11±2.69) kg/m2; 有吸烟史10例; 高血压26例,冠心病10例,糖尿病12例。2组性别、年龄、BMI等基线资料比较,差异均无统计学意义(P>0.05), 具有可比性。

    入院时,采用含3.2%枸椽酸钠的0.2 mL真空采血管取2组患者的1.8 mL静脉血,混合均匀后使用全自动凝血分析仪检测纤维蛋白原(FIB)、活化部分凝血活酶时间(APTT)、凝血酶原时间(PT)、凝血酶时间(TT)、血小板计数(PLT)等凝血功能指标水平; 用含抗凝剂的真空采血管采集患者2 mL静脉血,混合均匀后使用全自动血细胞分析仪检测PLT水平。2组患者入院时和随访3个月后,使用含0.102 mL枸椽酸钠的真空采血管取患者清晨空腹2 mL静脉血,将1 mL血样置于含氯化钙20 mL、高岭土340 mL的样杯中,采用CFMS LEPU-8800 TEG分析仪在2 h内检测凝血形成时间、凝血反应时间、凝块形成速率与最大振幅等TEG指标参数。所有试验均使用配套试剂盒,具体操作严格按照说明书进行。

    比较2组入院时FIB、APTT、PT、TT、PLT等凝血指标水平; 比较2组入院时及随访3个月后的凝血形成时间、凝血反应时间、α角(表示凝块形成速率)与最大振幅等TEG检测指标参数。

    采用SPSS 22.0软件分析数据,性别、疾病史等计数资料采用[n(%)]表示,组间比较行χ2检验; 年龄、BMI等计量资料采用(x±s)表示,组间比较行t检验。P < 0.05表示差异有统计学意义。

    2组入院时APTT、TT、PT、FIB、PLT等常规凝血检测指标比较,差异均无统计学意义(P>0.05)。见表 1

    表  1  2组入院时常规凝血检测指标水平比较(x±s)
    指标 观察组(n=43) 对照组(n=43)
    APTT/s 31.39±3.54 30.47±4.12
    TT/s 14.13±2.76 15.19±3.37
    PT/s 10.83±0.67 10.72±0.89
    FIB/(g/L) 3.13±1.02 3.41±0.58
    PLT/(×109/L) 211.37±48.39 203.48±58.67
    APTT: 活化部分凝血活酶时间; TT: 凝血酶时间;
    PT: 凝血酶原时间; FIB: 纤维蛋白原; PLT: 血小板计数。
    下载: 导出CSV 
    | 显示表格

    入院时,观察组凝血形成时间、凝血反应时间长于对照组, α角小于对照组,最大振幅低于对照组,差异有统计学意义(P < 0.05)。随访3个月后,观察组最大振幅低于对照组,差异有统计学意义(P < 0.05), 但2组凝血形成时间、凝血反应时间和α角比较,差异均无统计学意义(P>0.05)。见表 2

    表  2  2组血栓弹力图参数比较(x±s)
    组别 凝血形成时间/min 凝血反应时间/min α角/ ° 最大振幅/mm
    入院时 随访3个月后 入院时 随访3个月后 入院时 随访3个月后 入院时 随访3个月后
    观察组(n=43) 1.64±0.35* 1.64±0.41 6.08±0.72* 6.09±0.87 62.71±4.36* 62.31±6.02 61.39±4.08* 58.64±6.27*
    对照组(n=43) 1.46±0.45 1.51±0.43 5.67±1.01 5.88±0.71 64.76±4.92 63.59±5.87 66.79±5.28 61.48±4.69
    与对照组比较, *P < 0.05。
    下载: 导出CSV 
    | 显示表格

    急性脑梗死是一种临床常见脑血管疾病,具有较高发病率、致残率和病死率,常由纤溶系统和凝血系统失衡、血小板活化造成血栓而引发[5-7]。急性脑梗死具有发病急、病情进展快等特点,早期CT检查不易检出,对即刻诊断造成困难,常错过溶栓时机,对治疗及预后产生影响[8-9]。常规凝血检测指标只能对凝血过程中部分及个别因子进行检测,无法完全反映患者凝血功能的真实状态[10-12], 而采用TEG联合检测可反映、评估凝血级联反应、纤溶活性、血小板和血细胞成分对血浆因子活动影响[13-15]

    凝血功能指标包括FIB、PT、PP、APTT, 这些指标可作为反映机体血液凝血功能的重要参考指标[16]。FIB为急性时相反应蛋白,血液高凝状态下FIB会升高,反之则会降低。PT、PP、APTT为重要的内外源凝血指标。FIB增加或PT、PP、APTT缩短表明血液高凝,反之凝血功能则降低[17-18]。TEG是一种可靠的凝血系统紊乱检测指标,具有易操作、用血量少和检测时间短等优点,为临床提供凝血因子活性、血小板功能等完整信息[19-21]。TEG主要包括凝血形成时间、凝血反应时间、α角和最大振幅等检测指标,分别能反映血小板与纤维蛋白在血凝块形成早期的相互作用,凝血开始时凝血因子的作用、血小板与纤维蛋白在增强血凝块中的作用,血小板在血凝块稳定阶段的作用[22-23]

    本研究结果显示, 2组入院时APTT、TT、PT、FIB、PLT等常规凝血检测指标比较均无显著差异,常规凝血指标并无明显异常,说明入院时凝血指标水平对预后良好和预后不良患者的预后效果均无明显影响。可能是因为APTT、PT等常规凝血指标检测只反映凝血开始时形成的少量凝血酶,并未能提供血栓强度、纤溶活性和血小板功能等完整信息。相关研究[24]认为,常规凝血指标检测不能很好反映出机体内真实凝血平衡情况,检测结果过于片面,肝素类物质会影响其检测结果。本研究结果表明,入院时,观察组的凝血形成时间、凝血反应时间显著长于照组, α角显著小于对照组、最大振幅显著低于对照组,提示在血凝块强化时,纤维蛋白原和血小板相互作用,以增加血块凝固速率,提高两者活性,使血液处于高凝状态,部分血小板活性受抗血小板治疗抑制,导致纤维蛋白、血小板结合形成血凝块的能力降低。随访3个月后,观察组最大振幅显著低于对照组,说明血小板仍存在较高活性,可形成新的血栓,对照组最大振幅增加可能与脑梗死复发存在一定关系。研究[25-27]认为,最大振幅可反映血小板、纤维蛋白凝块的最大强度,血小板发挥80%以上的作用,可反映其聚集功能。同时,最大振幅是导致缺血性脑卒中患者1年后发生预后不良的危险因素。

    综上所述, TEG检测指标参数可全面反映出患者体内的凝血变化情况,参数异常说明急性脑梗死预后不良患者血液存在高凝状态。TEG联合检测可为及时诊断急性脑梗死、评估患者病情及治疗提供理论依据。但本研究仍存在一定局限性,研究的样本量较少,还需从多方面深入验证采用单独TEG指标检测急性脑梗死与缺血复发情况风险间的关系。

  • [1]

    CASTRO M R, GHARIB H. Thyroid fine-needle aspiration biopsy: progress, practice, and pitfalls[J]. Endocr Pract, 2003, 9(2): 128-136. doi: 10.4158/EP.9.2.128

    [2]

    SHEFFIELD B S, MASOUDI H, WALKER B, et al. Preoperative diagnosis of thyroid nodules using the Bethesda System for Reporting Thyroid Cytopathology: a comprehensive review and meta-analysis[J]. Expert Rev Endocrinol Metab, 2014, 9(2): 97-110. doi: 10.1586/17446651.2014.887435

    [3]

    NIKIFOROV Y E, OHORI N P, HODAK S P, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples[J]. J Clin Endocrinol Metab, 2011, 96(11): 3390-3397. doi: 10.1210/jc.2011-1469

    [4]

    CARR R, USTUN B, CHHIENG D, et al. Radiologic and clinical predictors of malignancy in the follicular lesion of undetermined significance of the thyroid[J]. Endocr Pathol, 2013, 24(2): 62-68. doi: 10.1007/s12022-013-9240-4

    [5]

    KIM S K, HWANG T S, YOO Y B, et al. Surgical results of thyroid nodules according to a management guideline based on the BRAF(V600E) mutation status[J]. J Clin Endocrinol Metab, 2011, 96(3): 658-664. doi: 10.1210/jc.2010-1082

    [6]

    LEE S E, HWANG T S, CHOI Y L, et al. Molecular profiling of papillary thyroid carcinoma in Korea with a high prevalence of BRAFV600E mutation[J]. Thyroid, 2017, 27(6): 802-810. doi: 10.1089/thy.2016.0547

    [7]

    MACEROLA E, RAGO T, PROIETTI A, et al. The mutational analysis in the diagnostic work-up of thyroid nodules: the real impact in a center with large experience in thyroid cytopathology[J]. J Endocrinol Investig, 2019, 42(2): 157-166. doi: 10.1007/s40618-018-0895-z

    [8]

    ZHANG Y L, WANG D Q, ZHANG H, et al. The value of BRAF V600E gene detection in thyroid cytological diagnosis via a large population[J]. Zhonghua Bing Li Xue Za Zhi, 2020, 49(2): 186-188. http://www.researchgate.net/publication/339426710_The_value_of_BRAF_V600E_gene_detection_in_thyroid_cytological_diagnosis_via_a_large_population

    [9]

    JIA Y, YU Y, LI X, et al. Diagnostic value of B-RAF(V600E) in difficult-to-diagnose thyroid nodules using fine-needle aspiration: systematic review and meta-analysis[J]. Diagn Cytopathol, 2014, 42(1): 94-101. doi: 10.1002/dc.23044

    [10]

    CELIK M, BULBUL B Y, AYTURK S, et al. The relation between BRAFV600E mutation and clinicopathological characteristics of papillary thyroid cancer[J]. Med Glas: Zenica, 2020, 17(1): 30-34. http://www.researchgate.net/publication/338548279_The_relation_between_BRAFV600E_mutation_and_clinicopathological_characteristics_of_papillary_thyroid_cancer

    [11]

    XING M, ALZAHRANI A S, CARSON K A, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer[J]. JAMA, 2013, 309(14): 1493-1501. doi: 10.1001/jama.2013.3190

    [12]

    RADKAY L A, CHIOSEA S I, SEETHALA R R, et al. Thyroid nodules with KRAS mutations are different from nodules with NRAS and HRAS mutations with regard to cytopathologic and histopathologic outcome characteristics[J]. Cancer Cytopathol, 2014, 122(12): 873-882. doi: 10.1002/cncy.21474

    [13]

    COHEN D S, TONGSON-IGNACIO J E, LOLACHI C M, et al. Rethinking malignancy risk in indeterminate thyroid nodules with positive molecular studies: southern California permanente experience[J]. Otolaryngol-Head Neck Surg, 2019, 161(3): 419-423. doi: 10.1177/0194599819842859

    [14]

    GUAN H, TORALDO G, CERDA S, et al. Utilities of RAS mutations in preoperative fine needle biopsies for decision making for thyroid nodule management: results from a single-center prospective cohort[J]. Thyroid, 2020, 30(4): 536-547. doi: 10.1089/thy.2019.0116

    [15]

    MEDICI M, KWONG N, ANGELL T E, et al. The variable phenotype and low-risk nature of RAS-positive thyroid nodules[J]. BMC Med, 2015, 13: 184. doi: 10.1186/s12916-015-0419-z

    [16]

    CLINKSCALES W, ONG A, NGUYEN S, et al. Diagnostic value of RAS mutations in indeterminate thyroid nodules[J]. Otolaryngol-Head Neck Surg, 2017, 156(3): 472-479. doi: 10.1177/0194599816685697

    [17]

    NIKIFOROV Y E. RET/PTC rearrangement in thyroid tumors[J]. Endocr Pathol, 2002, 13(1): 3-16. doi: 10.1385/EP:13:1:03

    [18]

    SU X, LI Z, HE C, et al. Radiation exposure, young age, and female gender are associated with high prevalence of RET/PTC1 and RET/PTC3 in papillary thyroid cancer: a meta-analysis[J]. Oncotarget, 2016, 7(13): 16716-16730. doi: 10.18632/oncotarget.7574

    [19]

    NAJAFIAN A, NOURELDINE S, AZAR F, et al. RAS mutations, and RET/PTC and PAX8/PPAR-gamma chromosomal rearrangements are also prevalent in benign thyroid lesions: implications thereof and A systematic review[J]. Thyroid, 2017, 27(1): 39-48. doi: 10.1089/thy.2016.0348

    [20]

    ELISEI R, TACITO A, RAMONE T, et al. Twenty-five years experience on RET genetic screening on hereditary MTC: an update on the prevalence of germline RET mutations[J]. Genes: Basel, 2019, 10(9): 698-699. doi: 10.3390/genes10090698

    [21]

    HUANG Q, HU A H, ZHANG M S. Chinese siblings with hereditary medullary thyroid carcinoma caused by RET mutation: implications for RET oncogene detection[J]. BMC Endocr Disord, 2020, 20(1): 64. doi: 10.1186/s12902-020-0544-3

    [22]

    WANG S, WANG B, XIE C, et al. RET proto-oncogene gene mutation is related to cervical lymph node metastasis in medullary thyroid carcinoma[J]. Endocr Pathol, 2019, 30(4): 297-304. doi: 10.1007/s12022-019-09588-z

    [23]

    KROLL T G. PAX8-PPARgamma 1 fusion in oncogene human thyroid carcinoma[J]. Science, 2000, 289(5483): 1357-1360. doi: 10.1126/science.289.5483.1357

    [24]

    MOSES W, WENG J, SANSANO I, et al. Molecular testing for somatic mutations improves the accuracy of thyroid fine-needle aspiration biopsy[J]. World J Surg, 2010, 34(11): 2589-2594. doi: 10.1007/s00268-010-0720-0

    [25]

    NIKIFOROVA M N, LYNCH R A, BIDDINGER P W, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma[J]. J Clin Endocrinol Metab, 2003, 88(5): 2318-2326. doi: 10.1210/jc.2002-021907

    [26]

    JEONG S H, HONG H S, KWAK J J, et al. Analysis of RAS mutation and PAX8/PPARγ rearrangements in follicular-derived thyroid neoplasms in a Korean population: frequency and ultrasound findings[J]. J Endocrinol Investig, 2015, 38(8): 849-857. doi: 10.1007/s40618-015-0311-x

    [27]

    ARMSTRONG M J, YANG H, YIP L, et al. PAX8/PPARγ rearrangement in thyroid nodules predicts follicular-pattern carcinomas, in particular the encapsulated follicular variant of papillary carcinoma[J]. Thyroid, 2014, 24(9): 1369-1374. doi: 10.1089/thy.2014.0067

    [28]

    DWIVEDI S S, KHANDEPARKAR S G, JOSHI A R, et al. Study of immunohistochemical markers (CK-19, CD-56, ki-67, p53) in differentiating benign and malignant solitary thyroid nodules with special reference to papillary thyroid carcinomas[J]. J Clin Diagn Res, 2016, 10(12): EC14-EC19. http://europepmc.org/abstract/MED/28208864

    [29]

    MANZELLA L, STELLA S, PENNISI M S, et al. New insights in thyroid cancer and p53 family proteins[J]. Int J Mol Sci, 2017, 18(6): 1325-1328. doi: 10.3390/ijms18061325

    [30]

    ZHANG J, LI Y, LYU N, et al. The analysis of genetic and clinicopathologic characteristics in patients with follicular thyroid neoplasm[J]. Zhonghua Zhong Liu Za Zhi, 2019, 41(8): 594-598. http://www.researchgate.net/publication/335366205_The_analysis_of_genetic_and_clinicopathologic_characteristics_in_patients_with_follicular_thyroid_neoplasm

    [31]

    DUAN H, LIU X, REN X, et al. Mutation profiles of follicular thyroid tumors by targeted sequencing[J]. Diagn Pathol, 2019, 14(1): 39. doi: 10.1186/s13000-019-0817-1

    [32]

    LIU R Y, XING M Z. TERT promoter mutations in thyroid cancer[J]. Endocr-Relat Cancer, 2016, 23(3): R143-R155. doi: 10.1530/ERC-15-0533

    [33]

    LIU R M, LI Y L, CHEN W X, et al. Mutations of the TERT promoter are associated with aggressiveness and recurrence/distant metastasis of papillary thyroid carcinoma[J]. Oncol Lett, 20(4): 50-50. http://www.researchgate.net/publication/343238730_Mutations_of_the_TERT_promoter_are_associated_with_aggressiveness_and_recurrencedistant_metastasis_of_papillary_thyroid_carcinoma

    [34]

    SONG Y S, PARK Y J. Mechanisms of TERT reactivation and its interaction with BRAFV600E[J]. Endocrinol Metab Seoul Korea, 2020, 35(3): 515-525. doi: 10.3803/EnM.2020.304

    [35]

    XING M Z, LIU R Y, LIU X L, et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence[J]. J Clin Oncol, 2014, 32(25): 2718-2726. doi: 10.1200/JCO.2014.55.5094

    [36]

    SONG Y S, YOO S K, KIM H H, et al. Interaction of BRAF-induced ETS factors with mutant TERT promoter in papillary thyroid cancer[J]. Endocr-Relat Cancer, 2019, 26(6): 629-641. doi: 10.1530/ERC-17-0562

    [37]

    LIU Y, PAN B H, XU L, et al. The diagnostic performance of afirma gene expression classifier for the indeterminate thyroid nodules: a meta-analysis[J]. Biomed Res Int, 2019, 2019: 7150527. http://www.ncbi.nlm.nih.gov/pubmed/31531363

    [38]

    WITT R L. Outcome of thyroid gene expression classifier testing in clinical practice[J]. Laryngoscope, 2016, 126(2): 524-527. doi: 10.1002/lary.25607

    [39]

    HARRELL R M, BIMSTON D N. Surgical utility of Afirma: effects of high cancer prevalence and oncocytic cell types in patients with indeterminate thyroid cytology[J]. Endocr Pract, 2014, 20(4): 364-369. doi: 10.4158/EP13330.OR

    [40]

    PARAJULI S, JUG R, AHMADI S, et al. Hurthle cell predominance impacts results of Afirma gene expression classifier and ThyroSeq molecular panel performance in indeterminate thyroid nodules[J]. Diagn Cytopathol, 2019, 47(11): 1177-1183. doi: 10.1002/dc.24290

    [41]

    NIKIFOROVA M N, WALD A I, ROY S, et al. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer[J]. J Clin Endocrinol Metab, 2013, 98(11): E1852-E1860. doi: 10.1210/jc.2013-2292

    [42]

    NIKIFOROV Y E, CARTY S E, CHIOSEA S I, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay[J]. Cancer, 2014, 120(23): 3627-3634. doi: 10.1002/cncr.29038

    [43]

    MARCADIS A R, VALDERRABANO P, HO A S, et al. Interinstitutional variation in predictive value of the ThyroSeq v2 genomic classifier for cytologically indeterminate thyroid nodules[J]. Surgery, 2019, 165(1): 17-24. doi: 10.1016/j.surg.2018.04.062

    [44]

    STEWARD D L, CARTY S E, SIPPEL R S, et al. Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study[J]. JAMA Oncol, 2019, 5(2): 204-212. doi: 10.1001/jamaoncol.2018.4616

  • 期刊类型引用(14)

    1. 彭定越,周红,吕渊. 血栓弹力图预测急性脑梗死并发下肢深静脉血栓的应用进展. 中国老年保健医学. 2024(01): 119-122 . 百度学术
    2. 骆苏彦,何鑫,宋欢霞. 急性缺血性脑卒中患者TEG与凝血功能指标的相关性研究. 实验与检验医学. 2024(01): 67-69+99 . 百度学术
    3. 郑巧珅,汤俊峰. 希森美康CS-5100凝血检测结果联合TEG5000血栓弹力图仪指标在判断急性脑梗死患者预后中的应用价值. 中国医疗器械信息. 2024(16): 111-113 . 百度学术
    4. 朱艳玲,哈力旦·加马力丁,刘芳,米拉·巴依肯,汪露. 凝血指标联合血栓弹力图指标对缺血性脑卒中患者复发的预测价值研究. 实用心脑肺血管病杂志. 2023(04): 35-39 . 百度学术
    5. 杨黎,顾雪琴,郭毅. 急性脑梗死患者凝血相关指标与炎症反应的关系及对预后的预测价值. 国际检验医学杂志. 2023(11): 1343-1347 . 百度学术
    6. 虞冬晴,车路. 基于西洛他唑双重抗血小板方案对氯吡格雷抵抗老年急性脑梗死病人的疗效及预后评价. 实用老年医学. 2023(08): 843-847 . 百度学术
    7. 李振亚. 血栓弹力图联合常规凝血指标对脑梗死患者预后不良的预测价值. 中国民康医学. 2023(22): 126-129 . 百度学术
    8. 邓容,李广权,苟甜甜,张林,陈欢. 血清D-二聚体、纤维蛋白原检测联合血栓弹力图对急性心肌梗死预后的评估价值. 西部医学. 2022(07): 1056-1060 . 百度学术
    9. 夏娜. 血栓弹力图与常规凝血试验指标评价脑梗塞患者凝血状态的相关性分析. 医学食疗与健康. 2022(15): 143-146 . 百度学术
    10. 吴丽君. 凝血四项、C反应蛋白、脑钠肽联合同型半胱氨酸检测在急性脑梗死诊断中的应用. 中外医学研究. 2022(27): 82-85 . 百度学术
    11. 赖宝瑶,林铭健,洪永灯. 脂蛋白相关磷脂酶A2、D-二聚体和降钙素原联合检测在急性脑梗死中的诊断价值. 中外医学研究. 2022(29): 82-85 . 百度学术
    12. 黄水发,叶宝华,周志忠,叶宝青. 体外膜肺氧合联合经皮冠状动脉介入在急性心肌梗死患者中的应用. 中国当代医药. 2022(29): 61-64 . 百度学术
    13. 彭秤发. 血栓弹力图检测与常规凝血试验在重症感染患者血浆输注中的应用体会. 现代诊断与治疗. 2022(20): 3066-3068 . 百度学术
    14. 王兆斌,林琼琳,彭燕,郭雅春,辛磊,曹雷华,谌辉鹏. 血栓弹力图评估前列腺增生经尿道前列腺电切术术后凝血状态的临床价值. 临床医药实践. 2021(11): 822-825 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 14
出版历程
  • 收稿日期:  2020-09-29
  • 网络出版日期:  2021-01-26
  • 发布日期:  2021-01-27

目录

/

返回文章
返回
x 关闭 永久关闭