肿瘤突变负荷对结直肠癌患者免疫治疗疗效的预测价值

张奥伦, 殷婷, 张西志

张奥伦, 殷婷, 张西志. 肿瘤突变负荷对结直肠癌患者免疫治疗疗效的预测价值[J]. 实用临床医药杂志, 2020, 24(8): 128-132. DOI: 10.7619/jcmp.202008035
引用本文: 张奥伦, 殷婷, 张西志. 肿瘤突变负荷对结直肠癌患者免疫治疗疗效的预测价值[J]. 实用临床医药杂志, 2020, 24(8): 128-132. DOI: 10.7619/jcmp.202008035
ZHANG Aolun, YIN Ting, ZHANG Xizhi. Value of tumor mutation burden in predicting efficiency of immunotherapy for patients with colorectal cancer[J]. Journal of Clinical Medicine in Practice, 2020, 24(8): 128-132. DOI: 10.7619/jcmp.202008035
Citation: ZHANG Aolun, YIN Ting, ZHANG Xizhi. Value of tumor mutation burden in predicting efficiency of immunotherapy for patients with colorectal cancer[J]. Journal of Clinical Medicine in Practice, 2020, 24(8): 128-132. DOI: 10.7619/jcmp.202008035

肿瘤突变负荷对结直肠癌患者免疫治疗疗效的预测价值

基金项目: 

吴阶平医学基金会资助项目(HX2019018)

详细信息
    通讯作者:

    张西志,E-mail:18051060361@qq.com

  • 中图分类号: R735.3

Value of tumor mutation burden in predicting efficiency of immunotherapy for patients with colorectal cancer

  • 摘要: 目前,结直肠癌的治疗已经从“外科为主、放化疗为辅”的固有治疗模式转向了精准化、个体化的治疗理念,免疫治疗越来越受到重视。然而,并不是所有的患者都对免疫检查点抑制剂有反应。因此,预测治疗反应的可能性将有助于对可获益的患者进行筛选。较多研究表明,肿瘤突变负荷与免疫检查点抑制剂的疗效呈正相关,可以成为免疫治疗的独立生物标记物。本研究对肿瘤突变负荷在结直肠癌患者免疫治疗疗效中的预测价值及应用现状进行综述。
    Abstract: At present, the treatment of colorectal cancer has changed from the inherent treatment mode of "surgery as the main therapy, radiotherapy and chemotherapy as adjuvant therapy" to the precise and individualized treatment concept, and immunotherapy has been paid more and more attention. However, not all the patients respond to immunocheckpoint inhibitors. Therefore, predicting the possibility of treatment response will help to screen the patients who can benefit. Many studies have shown that tumor mutation load has a positive correlation with the efficacy of immunosuppressive checkpoint inhibitors, and it can become an independent biomarker of immunotherapy. In this study, the prediction value and application status of tumor mutation load in immunotherapy of patients with colorectal cancer were reviewed.
  • Cai Z J, Liu Q. Understanding the Global Cancer Statistics 2018: implications for cancer control[J]. Sci China Life Sci, 2019: 1-4.

    李鹏, 王拥军, 陈光勇, 等. 中国早期结直肠癌及癌前病变筛查与诊治共识[J]. 中国医刊, 2015, 50(2): 14-30.

    Wang C H, Yu X T, Wang W. A meta-analysis of efficacy and safety of antibodies targeting PD-1/PD-L1 in treatment of advanced nonsmall cell lung cancer[J]. Medicine(Baltimore), 2016, 95(52): e5539-e5545.

    Lin Z J, Chen X, Li Z F, et al. PD-1 antibody monotherapy for malignant melanoma: a systematic review and meta-analysis[J]. PLoS One, 2016, 11(8): e0160485.

    Le D T, Durham J N, Smith K N, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349): 409-413.

    Goodman A M, Kato S, Bazhenova L, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers[J]. Mol Cancer Ther, 2017, 16(11): 2598-2608.

    Rizvi H, Sanchez-Vega F, La K, et al. Molecular determinants of response to anti-programmed cell death(PD)-1 and anti-programmed death-ligand 1(PD-L1)blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing[J]. J Clin Oncol, 2018, 36(7): 633-641.

    Carbone D P, Reck M, Paz-Ares L, et al. First-line nivolumab in stage IV or recurrent non–small-cell lung cancer[J]. N Engl J Med, 2017, 376(25): 2415-2426.

    McGranahan N, Furness A J, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade[J]. Science, 2016, 351(6280): 1463-1469.

    Yi M, Qin S, Zhao W H, et al. The role of neoantigen in immune checkpoint blockade therapy[J]. Exp Hematol Oncol, 2018, 7: 28-32.

    Ott P A, Hu Z T, Keskin D B, et al. An immunogenic personal neoantigen vaccine for patients with melanoma[J]. Nature, 2017, 547(7662): 217-221.

    Keskin D B, Anandappa A J, Sun J, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial[J]. Nature, 2019, 565(7738): 234-239.

    Zaravinos A, Roufas C, Nagara M, et al. Cytolytic activity correlates with the mutational burden and deregulated expression of immune checkpoints in colorectal cancer[J]. J Exp Clin Cancer Res, 2019, 38(1): 364.

    Panda A, Betigeri A, Subramanian K, et al. Identifying a clinically applicable mutational burden threshold as a potential biomarker of response to immune checkpoint therapy in solid tumors[J]. JCO Precis Oncol, 2017, 2017: 146-154.

    Endris V, Buchhalter I, Allgäuer M, et al. Measurement of tumor mutational burden(TMB)in routine molecular diagnostics: in silico and real-life analysis of three larger gene panels[J]. Int J Cancer, 2019, 144(9): 2303-2312.

    Schrock A B, Ouyang C, Sandhu J, et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer[J]. Ann Oncol, 2019, 30(7): 1096-1103.

    Dung T L, Jennifer N U, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015, 373(20): 1979-1986.

    Le D T, Uram J N, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015, 372(26): 2509-2520.

    Ritterhouse L L. Tumor mutational burden[J]. Cancer Cytopathol, 2019, 127(12): 735-736.

    Fabrizio D A, George T J Jr, Dunne R F, et al. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition[J]. J Gastrointest Oncol, 2018, 9(4): 610-617.

    Giannakis M, Mu X J, Shukla S A, et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma[J]. Cell Rep, 2016, 17(4): 1206-1213.

    Briggs S, Tomlinson I. Germline and somatic polymerase ε and δ mutations define a new class of hypermutated colorectal and endometrial cancers[J]. J Pathol, 2013, 230(2): 148-153.

    Stadler Z K, Battaglin F, Middha S, et al. Reliable detection of mismatch repair deficiency in colorectal cancers using mutational load in next-generation sequencing panels[J]. J Clin Oncol, 2016, 34(18): 2141-2147.

    Mlecnik B, Bindea G, Angell H K, et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability[J]. Immunity, 2016, 44(3): 698-711.

    Gong J, Robertson M D, Kim E, et al. Efficacy of PD-1 blockade in refractory microsatellite-stable colorectal cancer with high tumor mutation burden[J]. Clin Colorectal Cancer, 2019, 18(4): 307-309.

    Pai S G, Carneiro B A, Chae Y K, et al. Correlation of tumor mutational burden and treatment outcomes in patients with colorectal cancer[J]. J Gastrointest Oncol, 2017, 8(5): 858-866.

    Klempner S J, Fabrizio D, Bane S, et al. Tumor mutational burden as a predictive biomarker for response to immune checkpoint inhibitors: a review of current evidence[J]. Oncologist, 2020, 25(1): e147-e159.

    Chalmers Z R, Connelly C F, Fabrizio D, et al. Analysis of 100, 000 human cancer genomes reveals the landscape of tumor mutational burden[J]. Genome Med, 2017, 9(1): 34-39.

    Chowell D, Morris L G T, Grigg C M, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy[J]. Science, 2018, 359(6375): 582-587.

    Turajlic S, Litchfield K, Xu H, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a Pan-cancer analysis[J]. Lancet Oncol, 2017, 18(8): 1009-1021.

    Fabrizio D, Malboeuf C, Lieber D, et al. Analytic validation of a next generation sequencing assay to identify tumor mutational burden from blood(bTMB)to support investigation of an anti-PD-L1 agent, atezolizumab, in a first line non-small cell lung cancer trial(BFAST)[J]. Ann Oncol, 2017, 28(Suppl 5): 27-35.

    Büttner R, Longshore J W, López-Ríos F, et al. Implementing TMB measurement in clinical practice: considerations on assay requirements[J]. ESMO Open, 2019, 4(1): e000442.

    Samstein R M, Lee C H, Shoushtari A N, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types[J]. Nat Genet, 2019, 51(2): 202-206.

    Wolchok J D, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma[J]. N Engl J Med, 2017, 377(14): 1345-1356.

    Hellmann M D, Callahan M K, Awad M M, et al. Tumor mutational burden and efficacy of nivolumab monotherapy and in combination with ipilimumab in small-cell lung cancer[J]. Cancer Cell, 2019, 35(2): 329-335.

  • 期刊类型引用(7)

    1. 万艳萍,吴敏香,杨姚萍. 中医护理适宜技术防治老年患者功能性便秘临床研究. 光明中医. 2023(11): 2195-2197 . 百度学术
    2. 步海玲,刘畅. 心理社会评估干预体系在功能性便秘患者生物反馈治疗中的应用. 系统医学. 2019(05): 143-145 . 百度学术
    3. 朱虹. 中西医结合治疗老年功能性便秘临床观察. 光明中医. 2019(10): 1572-1574 . 百度学术
    4. 陈强. 肠道水疗联合健康教育对功能性便秘的治疗与预防. 全科口腔医学电子杂志. 2019(15): 69+72 . 百度学术
    5. 邱飞亚,马兰萍,周璐璐,袁晓娟. 综合护理干预在老年功能性便秘患者中的应用价值研究. 临床医药文献电子杂志. 2019(57): 148 . 百度学术
    6. 李琳,王凤菊. 电刺激联合生物反馈疗法对女性压力性尿失禁症状改善及生活质量的影响. 实用临床医药杂志. 2019(19): 41-44 . 本站查看
    7. 李忠轩. 大补元煎加减联合针灸治疗老年功能性便秘疗效观察. 临床医药文献电子杂志. 2018(70): 159 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  428
  • HTML全文浏览量:  101
  • PDF下载量:  18
  • 被引次数: 7
出版历程
  • 收稿日期:  2020-02-06

目录

    /

    返回文章
    返回
    x 关闭 永久关闭