通过PI3K/AKT途径调节胶质母细胞瘤CD47表达对肿瘤侵袭性的影响

刘学键, 武霞, 李玉花

刘学键, 武霞, 李玉花. 通过PI3K/AKT途径调节胶质母细胞瘤CD47表达对肿瘤侵袭性的影响[J]. 实用临床医药杂志, 2020, 24(7): 56-61. DOI: 10.7619/jcmp.202007017
引用本文: 刘学键, 武霞, 李玉花. 通过PI3K/AKT途径调节胶质母细胞瘤CD47表达对肿瘤侵袭性的影响[J]. 实用临床医药杂志, 2020, 24(7): 56-61. DOI: 10.7619/jcmp.202007017
LIU Xuejian, WU Xia, LI Yuhua. Influence of CD47 expression regulated by PI3K/AKT pathway on the tumor invasiveness of glioblastoma[J]. Journal of Clinical Medicine in Practice, 2020, 24(7): 56-61. DOI: 10.7619/jcmp.202007017
Citation: LIU Xuejian, WU Xia, LI Yuhua. Influence of CD47 expression regulated by PI3K/AKT pathway on the tumor invasiveness of glioblastoma[J]. Journal of Clinical Medicine in Practice, 2020, 24(7): 56-61. DOI: 10.7619/jcmp.202007017

通过PI3K/AKT途径调节胶质母细胞瘤CD47表达对肿瘤侵袭性的影响

基金项目: 

山东省重点研发计划项目(2018GSF118038)

详细信息
  • 中图分类号: R739.41

Influence of CD47 expression regulated by PI3K/AKT pathway on the tumor invasiveness of glioblastoma

  • 摘要: 目的 探讨通过磷脂酰肌醇3-激酶(PI3K)/蛋白质丝氨酸苏氨酸激酶(AKT)通路调节胶质母细胞瘤CD47表达对肿瘤侵袭性的影响。 方法 选取手术切除并经病理证实的30例胶质母细胞瘤脑组织标本以及10个正常脑组织对照标本。分析低表达及高表达的CD47对胶质母细胞瘤侵袭性的影响。 结果 CD47在胶质母细胞瘤细胞中高表达, CD47低表达显著抑制了肿瘤侵袭性,而CD47的高表达则显著促进肿瘤侵袭性。CD47通过激活PI3K/AKT途径而显著增强胶质母细胞瘤的侵袭性(P<0.05)。 结论 CD47在胶质母细胞瘤细胞中高表达, CD47通过激活PI3K/AKT途径而增强胶质母细胞瘤的侵袭性。
    Abstract: Objective To investigate the effect of CD47 expression regulated by phosphatidylinositol 3-kinase(PI3K)/protein serine threonine kinase(AKT)pathway on the tumor invasiveness of glioblastoma. Methods Thirty samples of glioblastoma brain tissue confirmed by pathology were collected, and 10 normal samples of brain tissues were collected as controls. Effect of low and high expressions of CD47 on the invasiveness of glioblastoma were analyzed. Results CD47 was highly expressed in glioblastoma cells, and low expression of CD47 could significantly inhibit the tumor invasiveness, and high expression of CD47 could significantly promote the tumor invasiveness. CD47 was able to significantly enhance invasiveness of glioblastoma by activating the PI3K/AKT pathway(P<0.05). Conclusion CD47 is highly expressed in glioblastoma cells, and CD47 can significantly enhance invasiveness of glioblastoma by activating the PI3K/AKT pathway.
  • Munshi A. Central nervous system tumors: Spotlight on India[J]. South Asian J Cancer, 2016, 5(3): 146-147.

    Xu Y M, Yuan J, Zhang Z H, et al. Syndecan-1 expression in human glioma is correlated with advanced tumor progression and poor prognosis[J]. Mol Biol Rep, 2012, 39(9): 8979-8985.

    Miller T E, Liau B B, Wallace L C, et al. Transcription elongation factors represent in vivo cancer dependencies in glioblastoma[J]. Nature, 2017, 547(7663): 355-359.

    Baccelli I, Stenzinger A, Vogel V, et al. Co-expression of MET and CD47 is a novel prognosticator for survival of luminal breast cancer patients[J]. Oncotarget, 2014, 5(18): 8147-8160.

    Sun K, Ye L, Liu X P, et al. Expression of CRT and CD47 in Gastric Carcinoma and Their Significanc[J]. Cancer Res Prev Treat, 2019, 46(1): 45-49.

    Chao M P, Alizadeh A A, Tang C, et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia[J]. Cancer Res, 2011, 71(4): 1374-1384.

    Zhang H M, Lu H Q, Xiang L S, et al. HIF-1 regulates CD47 expression in breast cancer cells to promote evasion of phagocytosis and maintenance of cancer stem cells[J]. Proc Natl Acad Sci USA, 2015, 112(45): E6215-E6223.

    Parida S, Pal I, Parekh A, et al. GW627368X inhibits proliferation and induces apoptosis in cervical cancer by interfering with EP4/EGFR interactive signaling[J]. Cell Death Dis, 2016, 7: e2154-e2159.

    Lee T K, Cheung V C, Lu P, et al. Blockade of CD47-mediated cathepsin S/protease-activated receptor 2 signaling provides a therapeutic target for hepatocellular carcinoma[J]. Hepatology, 2014, 60(1): 179-191.

    Zhao H, Wang J X, Kong X D, et al. CD47 promotes tumor invasion and metastasis in non-small cell lung cancer[J]. Sci Rep, 2016, 6: 29719-29723.

    Lo J, Lau E Y, So F T, et al. Anti-CD47 antibody suppresses tumour growth and augments the effect of chemotherapy treatment in hepatocellular carcinoma[J]. Liver Int, 2016, 36(5): 737-745.

    Song X S, Shi B, Huang K X, et al. MiR-133a inhibits cervical cancer growth by targeting EGFR[J]. Oncol Rep, 2015, 34(3): 1573-1580.

    Prasad S B, Yadav S S, Das M, et al. PI3K/AKT pathway-mediated regulation of p27(Kip1)is associated with cell cycle arrest and apoptosis in cervical cancer[J]. Cell Oncol(Dordr), 2015, 38(3): 215-225.

    Chao M P, Tang C, Pachynski R K, et al. Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy[J]. Blood, 2011, 118(18): 4890-4901.

    Zhao X W, van Beek E M, Schornagel K, et al. CD47-signal regulatory protein-α(SIRPα)interactions form a barrier for antibody-mediated tumor cell destruction[J]. Proc Natl Acad Sci USA, 2011, 108(45): 18342-18347.

    Cioffi M, Trabulo S, Hidalgo M, et al. Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanisms[J]. Clin Cancer Res, 2015, 21(10): 2325-2337.

    Xiao Z Y, Chung H, Banan B, et al. Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma[J]. Cancer Lett, 2015, 360(2): 302-309.

    Baccelli I, Stenzinger A, Vogel V, et al. Co-expression of MET and CD47 is a novel prognosticator for survival of luminal breast cancer patients[J]. Oncotarget, 2014, 5(18): 8147-8160.

    Wang Y H, Xu Z H, Guo S T, et al. Intravenous delivery of siRNA targeting CD47 effectively inhibits melanoma tumor growth and lung metastasis[J]. Mol Ther, 2013, 21(10): 1919-1929.

    Ju B H, Huang Y T, Tian J, et al. In vitro application of anti-CD47 monoclonal antibody for targeted therapy of ovarian cancer[J]. Chinese Journal of Clinical Oncology, 2013, 40(8): 440-443.

    Xu J F, Pan X H, Zhang S J, et al. CD47 blockade inhibits tumor progression human osteosarcoma in xenograft models[J]. Oncotarget, 2015, 6(27): 23662-23670.

    Murata T, Ohnishi H, Okazawa H, et al. CD47 promotes neuronal development through Src- and FRG/Vav2-mediated activation of Rac and Cdc42[J]. J Neurosci, 2006, 26(48): 12397-12407.

    Soto-Pantoja D R, Miller T W, Pendrak M L, et al. CD47 deficiency confers cell and tissue radioprotection by activation of autophagy[J]. Autophagy, 2012, 8(11): 1628-1642.

    Chao M P, Tang C, Pachynski R K, et al. Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy[J]. Blood, 2011, 118(18): 4890-4901.

    Chao M P, Weissman I L, Majeti R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications[J]. Curr Opin Immunol, 2012, 24(2): 225-232.

    Horrigan S K, Reproducibility Project: Cancer Biology. Replication Study: The CD47-signal regulatory protein alpha(SIRPa)interaction is a therapeutic target for human solid tumors[J]. Elife, 2017, 6: e18173-e18183.

    Pan Y, Volkmer J P, Mach K E, et al. Endoscopic molecular imaging of human bladder cancer using a CD47 antibody[J]. Sci Transl Med, 2014, 6(260): 148-159.

    Ma Y J, Lu C, Li C F, et al. Overexpression of HSPA12B protects against cerebral ischemia/reperfusion injury via a PI3K/Akt-dependent mechanism[J]. Biochim Biophys Acta, 2013, 1832(1): 57-66.

    Dong H Q, Zhang X, Dai X N, et al. Lithium ameliorates lipopolysaccharide-induced microglial activation via inhibition of toll-like receptor 4 expression by activating the PI3K/Akt/FoxO1 pathway[J]. J Neuroinflammation, 2014, 11: 140-148.

    Li X H, Huang J, Yuan D M, et al. HSPA12B regulates SSeCKS-mediated astrocyte inflammatory activation in neuroinflammation[J]. Exp Cell Res, 2015, 339(2): 310-319.

    Cheaib B, Auguste A, Leary A. The PI3K/Akt/mTOR pathway in ovarian cancer: therapeutic opportunities and challenges[J]. Chin J Cancer, 2015, 34(1): 4-16.

  • 期刊类型引用(5)

    1. 邢枫,李永明,高明敏. 长链非编码RNA二磷酸腺苷依赖的葡萄糖激酶反义RNA1通过靶向miR-200b-5p促进视网膜母细胞瘤细胞增殖抑制凋亡. 中华肿瘤杂志. 2023(03): 230-237 . 百度学术
    2. 隋晓露,许云鹏,张燕子,张艾莎,谢婷妃,袁树珍,邹杰锋,曾启城,陈继红. PI3K/AKT/NF-κB信号通路在大鼠尿酸性肾病中的作用机制. 实用临床医药杂志. 2022(18): 78-82 . 本站查看
    3. 常越,唐翠,徐辉,曹相玫,刘仲涛. 过表达CD47重组慢病毒的制备及表达. 宁夏医科大学学报. 2022(12): 1195-1199 . 百度学术
    4. 林贤宾. Trk-B在促进胶质母细胞瘤失巢凋亡抵抗中的作用及机制研究. 中国医药指南. 2021(11): 34-35 . 百度学术
    5. 乔建新,刘明,刘熙鹏. miR-29a对胶质母细胞瘤细胞增殖、迁移、侵袭及PTEN/AKT/GSK-3β通路的影响. 现代医学. 2021(08): 884-892 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  305
  • HTML全文浏览量:  83
  • PDF下载量:  13
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-01-10

目录

    /

    返回文章
    返回
    x 关闭 永久关闭