纳米酶在生物医学领域的应用

周丝雨, 梁黛雯, 朱晓芳

周丝雨, 梁黛雯, 朱晓芳. 纳米酶在生物医学领域的应用[J]. 实用临床医药杂志, 2020, 24(6): 8-10. DOI: 10.7619/jcmp.202006003
引用本文: 周丝雨, 梁黛雯, 朱晓芳. 纳米酶在生物医学领域的应用[J]. 实用临床医药杂志, 2020, 24(6): 8-10. DOI: 10.7619/jcmp.202006003
ZHOU Siyu, LIANG Daiwen, ZHU Xiaofang. Application of nanozymes in biomedicine fields[J]. Journal of Clinical Medicine in Practice, 2020, 24(6): 8-10. DOI: 10.7619/jcmp.202006003
Citation: ZHOU Siyu, LIANG Daiwen, ZHU Xiaofang. Application of nanozymes in biomedicine fields[J]. Journal of Clinical Medicine in Practice, 2020, 24(6): 8-10. DOI: 10.7619/jcmp.202006003

纳米酶在生物医学领域的应用

详细信息
    通讯作者:

    朱晓芳,E-mail:sharonzhu66@126.com

  • 中图分类号: R318.08

Application of nanozymes in biomedicine fields

  • 摘要: 过去几十年,纳米颗粒在能源产生、润滑剂添加剂、化学分析和医学成像等领域得到广泛应用。科学家发现,一些纳米材料在生理条件下具有内在的酶模拟特性,例如铁氧化物纳米颗粒具有与天然酶(如过氧化氢酶或过氧化物酶)相似的高催化活性,因此被称为纳米酶。近十年来,这些纳米催化材料已经在一些工业和能源相关领域中应用,并成为天然酶的替代品。纳米酶最初集中应用于工业领域和体外检测,如化学合成、生物分子检测、燃料处理或污染物去除等。近年来,科学界开始尝试将纳米酶应用于医学治疗,包括生物膜破坏、抗氧化、组织再生、肿瘤预防以及抗感染等。作者综述了纳米酶在医学领域的应用,并展望其应用前景。
    Abstract: In the past decades, nanoparticles have been widely used in energy generation, lubricant additives, chemical analysis and medical imaging. Meanwhile, scientists found that some nano materials have inherent enzyme simulation characteristics under physiological conditions, for example, iron oxide nanoparticles have high catalytic activity similar to natural enzymes(such as catalase or peroxidase). Therefore, they were named as nanozymes. In the past decade, these catalytic nanomaterials have been applied in some industrial and energy related field and has been as substitutes for natural enzymes. At first, nanozymes were mainly used in industrial field and in vitro detection, such as chemical synthesis, biomolecular detection, fuel processing or pollutant removal. In recent years, nanozymes has been used in medical field, including biofilm destruction, antioxidation, tissue regeneration, and prevention of tumor or anti-infection. In this paper, the application of nanozymes in biomedical science is reviewed, and its prospect in future is explored.
  • Wei H, Wang E K. Nanomaterials with enzyme-like characteristics(nanozymes): next-generation artificial enzymes[J]. Chem Soc Rev, 2013, 42(14): 6060-6093.

    高利增, 阎锡蕴. 纳米酶的发现与应用[J]. 生物化学与生物物理进展, 2013, 40(10): 892-902.

    Wu J, Wang X Y, Wang Q, et al. Nanomaterials with enzyme-like characteristics(nanozymes): next-generation artificial enzymes(Ⅱ)[J]. Chem Soc Rev, 2019, 48(4): 1004-1076.

    Ahmed S, Annu, Ikram S, et al. Biosynthesis of gold nanoparticles: a green approach[J]. J Photochem Photobiol B, Biol, 2016, 161: 141-153.

    Kalantari M, Ghosh T, Liu Y, et al. Highly thiolated dendritic mesoporous silica nanoparticles with high-content gold as nanozymes: the nano-gold size matters[J]. ACS Appl Mater Interfaces, 2019, 11(14): 13264-13272.

    Yao J, Cheng Y, Zhou M, et al. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation[J]. Chem Sci, 2018, 9(11): 2927-2933.

    Xia X H, Zhang J T, Lu N, et al. Pd-Ir core-shell nanocubes: a type of highly efficient and versatile peroxidase mimic[J]. ACS Nano, 2015, 9(10): 9994-10004.

    胡莹, 马桃林. 纳米材料模拟酶的研究进展[J]. 现代化工, 2018, 38(3): 71-75.

    Liu B W, Liu J W. Surface modification of nanozymes[J]. Nano Res, 2017, 10(4): 1125-1148.

    Fan K L, Wang H, Xi J Q, et al. Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site[J]. Chem Commun(Camb), 2016, 53(2): 424-427.

    唐燕, 杨雪琴, 高利增. 钙掺杂调节四氧化三铁纳米酶活性及其抗病毒作用[J]. 实用临床医药杂志, 2018, 22(15): 1-7

    , 13.

    Dugan L L, Tian L L, Quick K L, et al. Carboxyfullerene neuroprotection postinjury in Parkinsonian nonhuman Primates[J]. Ann Neurol, 2014, 76(3): 393-402.

    Vernekar A A, Sinha D, Srivastava S, et al. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires[J]. Nat Commun, 2014, 5: 5301.

    Wong L L, Pye Q N, Chen L J, et al. Defining the catalytic activity of nanoceria in the P23H-1 rat, a photoreceptor degeneration model[J]. PLoS One, 2015, 10(3): e0121977.

    Gu Y H, Huang Y X, Qiu Z Y, et al. Vitamin B2 functionalized iron oxide nanozymes for mouth ulcer healing[J]. Sci China Life Sci, 2020, 63(1): 68-79.

    Ogura S, Shimosawa T. Oxidative stress and organ damages[J]. Curr Hypertens Rep, 2014, 16(8): 452.

    Tao Y, Ju E G, Ren J S, et al. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications[J]. Adv Mater Weinheim, 2015, 27(6): 1097-1104.

    Wang Q B, Lei J P, Deng S Y, et al. Graphene-supported ferric porphyrin as a peroxidase mimic for electrochemical DNA biosensing[J]. Chem Commun(Camb), 2013, 49(9): 916-918.

    Gao L Z, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nat Nanotechnol, 2007, 2(9): 577-583.

    Ma X Q, Hu W H, Guo C X, et al. DNA-templated biomimetic enzyme sheets on carbon nanotubes to sensitively in situ detect superoxide anions released from cells[J]. Adv Funct Mater, 2014, 24(37): 5897-5903.

    Kim J, Cho H R, Hyeon T, et al. Continuous O2-Evolving MnFe2O4 Nanoparticle-Anchored Mesoporous Silica Nanoparticles for Efficient Photodynamic Therapy in Hypoxic Cancer[J]. Journal of the American Chemical Society, 2017, 139(32), 10992-10995.

  • 期刊类型引用(18)

    1. 邵亚洲,邵甜甜. 急性胰腺炎消化内科药物治疗方法与临床效果研究. 智慧健康. 2023(24): 117-120 . 百度学术
    2. 危萃萍. 大黄承气汤联合乌司他丁对急性胰腺炎患者氧化应激指标及T淋巴细胞亚群的影响. 当代医学. 2022(15): 132-134 . 百度学术
    3. 韩祎. 生长抑素联合非诺贝特治疗慢性胰腺炎疗效及对AMY、LPS、PCT影响. 甘肃医药. 2021(03): 208-210 . 百度学术
    4. 刘靓懿,黄强,宿冬远,刘绍田,张玲,孙祖建. 生长抑素对急性胰腺炎患者外周血单核细胞CARD9、BCL-10水平的影响. 河北医药. 2021(07): 1051-1053+1058 . 百度学术
    5. 王建馗,刘娟. 丙氨酰谷氨酰胺辅助奥曲肽与乌司他丁治疗老年急性胰腺炎的效果. 医学综述. 2021(09): 1852-1856 . 百度学术
    6. 卢晓丽. 生长抑素持续静脉滴注联合奥曲肽对重症急性胰腺炎肠黏膜屏障影响. 辽宁医学杂志. 2021(05): 67-69 . 百度学术
    7. 姜萌,赵鹏. 奥曲肽联合加贝酯治疗重症急性胰腺炎疗效及对患者血清细胞因子水平的影响. 陕西医学杂志. 2020(02): 212-215 . 百度学术
    8. 林轩永. 血塞通注射液联合乌司他丁治疗老年胰腺炎效果观察. 临床合理用药杂志. 2020(13): 60-61 . 百度学术
    9. 杨永启,李鸿彬. 乌司他丁联合前列地尔治疗对急性胰腺炎患者炎症因子、T淋巴细胞水平的影响. 内科. 2020(05): 586-588 . 百度学术
    10. 时利可. 乌司他丁联合生长抑素对重症胰腺炎患者血液流变学及胃肠功能的影响. 数理医药学杂志. 2020(12): 1836-1837 . 百度学术
    11. 肖嘉新,王大海,江芸. 生长抑素联合乌司他丁对急性胰腺炎患者血清脂肪酶TNF-α及CRP水平的影响. 基层医学论坛. 2019(07): 934-935 . 百度学术
    12. 钟江鹏. 生长抑素、加贝酯联合乌司他丁治疗急性胰腺炎的临床疗效. 中国现代医生. 2019(10): 109-111 . 百度学术
    13. 马婕. 生长抑素与中药胰炎合剂联合治疗重症急性胰腺炎的临床效果及安全性分析. 中医临床研究. 2019(26): 67-68 . 百度学术
    14. 王益民. 生长抑制素治疗急性胰腺炎的临床研究. 首都食品与医药. 2019(24): 94-95 . 百度学术
    15. 田晓敏. 乌司他丁联合生长抑素对急性胰腺炎患者胰腺血流及炎症反应的影响. 淮海医药. 2018(03): 259-260+263 . 百度学术
    16. 马志强. 奥曲肽与乌司他丁联合治疗急性胰腺炎疗效与安全性研究. 中国疗养医学. 2018(02): 207-209 . 百度学术
    17. 邵炜慧,徐鹏. 乌司他丁联合生长抑素治疗急性重症胰腺炎的疗效. 河南医学高等专科学校学报. 2018(06): 566-567 . 百度学术
    18. 竺添雨,帅颖丽,孔弘伟. 生长抑素、加贝酯联合乌司他丁治疗急性胰腺炎的临床疗效分析. 中外医疗. 2017(30): 109-110+113 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  733
  • HTML全文浏览量:  133
  • PDF下载量:  69
  • 被引次数: 18
出版历程
  • 收稿日期:  2019-12-21

目录

    /

    返回文章
    返回
    x 关闭 永久关闭