1, 25-二羟维生素D3对非酒精性脂肪性肝病的作用研究进展

张夏霞, 李校天, 李沙, 黄红洽, 刘雨

张夏霞, 李校天, 李沙, 黄红洽, 刘雨. 1, 25-二羟维生素D3对非酒精性脂肪性肝病的作用研究进展[J]. 实用临床医药杂志, 2019, 23(22): 125-128. DOI: 10.7619/jcmp.201922042
引用本文: 张夏霞, 李校天, 李沙, 黄红洽, 刘雨. 1, 25-二羟维生素D3对非酒精性脂肪性肝病的作用研究进展[J]. 实用临床医药杂志, 2019, 23(22): 125-128. DOI: 10.7619/jcmp.201922042
ZHANG Xiaxia, LI Xiaotian, LI Sha, HUANG Hongqia, LIU Yu. Research progress on the effect of 1, 25-(OH)2D3 on non-alcoholic fatty liver disease[J]. Journal of Clinical Medicine in Practice, 2019, 23(22): 125-128. DOI: 10.7619/jcmp.201922042
Citation: ZHANG Xiaxia, LI Xiaotian, LI Sha, HUANG Hongqia, LIU Yu. Research progress on the effect of 1, 25-(OH)2D3 on non-alcoholic fatty liver disease[J]. Journal of Clinical Medicine in Practice, 2019, 23(22): 125-128. DOI: 10.7619/jcmp.201922042

1, 25-二羟维生素D3对非酒精性脂肪性肝病的作用研究进展

基金项目: 

河北省财政厅老年病防治研究项目 2016723

详细信息
    通讯作者:

    李校天, E-mail: xtianli2018@sina.com

  • 中图分类号: R575

Research progress on the effect of 1, 25-(OH)2D3 on non-alcoholic fatty liver disease

  • 非酒精性脂肪性肝病(NAFLD)是一类多系统疾病,随着生活水平的提高及生活习惯的改变,其发病率逐渐上升,最终可进展为非酒精性脂肪性肝炎(NASH)、肝硬化,甚至肝癌。1, 25-二羟维生素D3[1, 25-(OH)2D3]是人体内维生素D的最终活性形式,正常人群的维生素D缺乏(VDD)具有广泛性,而NAFLD患者体内的维生素D水平则更低。现将1, 25-(OH)2D3对NAFLD的作用的研究进展综述如下。

    NAFLD是一类无过量饮酒史(无饮酒史,或饮酒折合乙醇量男性 < 30 g/d, 女性 < 20 g/d)[1]并排除药物或其他导致脂肪肝等干扰因素的临床综合征,分为非酒精性脂肪肝、NASH、NASH肝硬化、NASH相关性肝细胞癌等组织学类型[2]。随着生活条件的改善,亚洲地区NAFLD的发病率可达25%[3], 有研究[4]汇总各国的流行病学调查结果也显示发病率不同程度上升,并且这种趋势一直在加剧,严重影响了人类的健康。目前已明确肥胖、2型糖尿病、血脂异常、代谢综合征等会增加NAFLD发病风险,同时NAFLD患者2型糖尿病、心血管疾病以及慢性肾脏疾病等的患病风险也会增加[5]。NAFLD的发病机制尚未完全明确,以肝脏甘油三酯蓄积为主要特点,是机体内多种信号通路及复杂调控失衡的结果,目前指南推荐以改变膳食结构及增强锻炼为主要干预方式,但仍缺乏明确推荐的药物治疗方法。1, 25-(OH)2D3是维生素D的活性形式,除具有抗氧化、调节钙磷代谢等作用外,其对糖尿病[6-7]、肺病[8-10]、肿瘤[11-12]、免疫类疾病[13-15]等均有影响。一些前期的动物和体外实验[16]发现1, 25-(OH)2D3可通过抑制肝星状细胞的增殖来延缓肝纤维化进展。近来大量研究表明,活性维生素D参与NAFLD的发生与发展,可缓解NAFLD的疾病进程。

    维生素D参与人体多种生理过程,除通过食物获得外,也通过太阳光照催化皮肤中7-脱氢胆固醇(7-DHC)转化为前维生素D3, 在血液中与维生素D结合蛋白(DBP)结合,在肝脏维生素D-25-羟化酶作用下转化为25-羟基维生素D3[25-(OH)D3], 最终在肾脏转化为1, 25-(OH)2D3[17]。久坐、长时间室内工作以及高脂高糖饮食导致VDD普遍存在。Holick M F[18]综合多个国家的调查结果,表明了VDD的广泛性。

    少数研究表明维生素D与NAFLD之间并无相关性, Jaruvongvanich V等[19]在一项涉及974例NAFLD患者的临床荟萃分析中,发现非酒精性脂肪性肝病活动度积分(NAS)及纤维化评分的高低与血清25-(OH)D3的水平无显著相关性。Patel Y A等[20]检测维生素D代谢基因(CYP24A1, CYP27, CYP2R1, CYP3A4, VDR)的肝脏表达后,发现这些基因的表达与NAFLD严重程度之间没有任何关系,证明NAFLD的组织学特征与维生素D水平之间缺乏关联。

    目前多数研究结果支持维生素D和NAFLD之间具有相关性, Roth C L等[21]在动物实验中发现高脂高糖饮食合并VDD的SD大鼠相比低脂组及高脂伴维生素D含量正常组的大鼠,肝脏炎性因子肿瘤坏死因子-α(TNF-α)、白介素-6(IL-6)和白介素-1β(IL-1β)表达上调更明显,同时提出VDD通过脂多糖(LPS)结合CD14/LBP增敏系统激活Toll样受体(TLR)2和TLR4的信号通路,刺激下游炎症信号分子导致脂肪变性和炎症,推动NAFLD的进一步发展。Sharma等[22]发现母体钙和维生素D的缺乏会使雌性后代脂质代谢异常,导致肝脏脂肪变性。

    Beilfuss A等[23]对106例NAFLD患者的肝脏活检标本进行分析,发现NAFLD患者血清维生素D水平降低,肝组织中的维生素D受体(VDR)基因表达增加。敲减VDR基因表达后会增加转化生长因子-β(TGF-β)诱导的α-平滑肌肌动蛋白(α-SMA)的表达。Nelson等[24]将190例经组织学检查确定为NASH的患者按血清维生素D水平分类,其中55%患者有VDD(< 20 ng/mL), 在调整年龄、性别、种族、体质量指数(BMI)、谷丙转氨酶(ALT)和糖尿病状态后,表明VDD与NASH独立相关。韩国学者[25]的一项横断面研究发现,在调整代谢综合征和内脏脂肪后,男性VDD与NAFLD之间存在显著关系。中国一项包含2 960名参与者的大样本临床实验中,调整年龄、吸烟、检查季节、血清钙、甲状旁腺激素和所有可能的混杂因素,单变量相关分析显示男性血清25-(OH)D3与肝脏脂肪含量显著相关,女则性不然[26]。Targher G等[27]收集冬季门诊确诊NAFLD的60例患者与60名正常志愿者的整体参数比较,前者血清25-(OH)D3浓度显著降低,并发现25-(OH)D3与NAFLD组织病理学之间是线性相关的。另外,国外学者[28]发现25例NASH患者、36例慢性丙型肝炎(CHC)患者的肝穿刺组织中VDR表达与NASH和CHC患者的肝组织学严重程度呈负相关,血清25(OH)D3水平与活检证实的NASH患者的肝细胞损伤程度成反比, NASH患者胆管细胞VDR表达与脂肪变性严重程度、小叶炎症、NAS评分呈负相关。VDD不仅体现在成年NAFLD患者中,有研究[29]还发现了儿童NAFLD患者的血清低维生素D水平。Manco M等[30]发现64例NAFLD患儿中伴随纤维化的血清25-(OH)D3水平更低,发现肝组织纤维化及炎症程度与血清25-(OH)D3水平相关(P<0.01)。Kim H S等[31]筛选了1988—1994年4 015例确诊NAFLD的患者并进行长达19年的随访,发现维生素D水平与肝脏脂肪变性程度呈显著负相关(P < 0.01), 并提出VDD增大了NAFLD患者糖尿病和阿尔兹海默症的相关死亡风险。

    1998年由DAY最早提出的“二次打击”学说,被广大学者所认可[32]。第一次打击是高脂饮食、肥胖和胰岛素抵抗等导致的肝脏脂质积聚。NAFLD最直接的病因是肝脏脂代谢异常,大量游离脂肪酸及甘油三酯在肝细胞内蓄积。体内正常脂质代谢有以下4种途径: ①膳食脂质吸收[33]; ②脂肪动员; ③肝脏从头合成; ④脂肪酸β氧化。第二次打击是活性氧激发肝实质细胞的炎症级联反应和纤维化。随着研究深度及广度的拓展,“多重打击学说”认为除“二次打击”外,环境、遗传因素和肠道微生物的变化共同作用于遗传易感者诱导NAFLD, 肠道菌群改变导致肠内脂肪酸进一步产生,激活炎症途径和释放促炎因子,炎症细胞因子加重肝脏炎症反应及脂质蓄积,形成肠道-肝脏轴恶性循环[34]。因此,以上任何一个途径出现问题都会导致NAFLD的发生和发展,且这些问题通常是共同存在的。

    在脂质代谢方面,对高脂饮食(HFD)建立的NAFLD小鼠的研究[35]发现,其肝脏过氧化物酶体增殖剂激活受体(PPAR)-α的表达减少平行于PPAR-γ的表达增加。Borges C C等[36]在喂养HFD及VDD的小鼠肝脏中发现PPAR-γ、甾醇调节元件结合蛋白1(SREBP1c)、碳水化合物反应元件结合蛋白(ChREBP)和脂肪酸合成酶(FAS)增加以及β-氧化减少,这些都是导致肝脏脂肪堆积的重要因素,而1, 25-(OH)2D3剂量依赖性地抑制3T3-L1前脂肪细胞分化后细胞内脂滴的形成,抑制分化早期转录因子PPAR-γ、转录因子α(C/EBPα)[37]、脂蛋白脂酶(LPL)、SREBP1c和FAS的表达[38]

    在氧化应激及炎症反应方面,中国学者[39]以HFD及HFD+VDD构建小鼠NAFLD模型,并连续6周进行5 ng/g的1, 25-(OH)2D3肌注,发现1, 25-(OH)2D3可降低模型鼠的肝甘油三酯、炎症因子TNF-α、IL-6的水平。有研究[40]发现, 1, 25-(OH)2D3通过降低丙二醛(MDA)减弱氧化应激,诱导转录因子NRF2核转位和上调编码抗氧化酶的基因的表达来保护免受HFD诱导的NAFLD。Jahn D等[41]在高脂高糖饮食的小鼠饲料中加入不同剂量的维生素D,发现高剂量(10 000 IU维生素D3)的维生素D可明显改善肝脏脂质堆积情况,降低炎症基因趋化因子(CCL2)的表达,同时发现维生素D治疗后回肠TLR4、TNF-α和IL-1β促炎基因的下调。一项对胆碱缺乏饮食诱导的NASH大鼠的研究[42]发现,补充1, 25-(OH)2D3提高了大鼠血清中25-(OH)D3的水平,降低了谷草转氨酶(AST)、ALT的表达量,并且提高肝脏VDR的表达,提示活性维生素D3对NASH的缓解作用。

    大量基于人群的临床试验也支持维生素D对NAFLD的治疗作用。Foroughi等[43]研究表明,维生素D补充治疗可降低NAFLD患者空腹血糖,减轻NAFLD患者胰岛素抵抗(IR)程度,增强胰岛素敏感性。Sharifi N等[44]发现改善NAFLD患者维生素D状态可改善血清高敏C反应蛋白和MDA水平。Kitson M T等[45]对12例经活检证实无肝纤维化的NASH患者给予大剂量维生素D(25 000 IU/周)口服24周,发现肝组织学及血清肝酶指标差异无统计学意义,但同时提出,在人群治疗中,维生素D效果体现可能24周时间相对较短。因此,国外学者[46]对48例组织学确定为NASH的患者进行了一项双盲随机对照实验,发现给予2 100 IU维生素D治疗48周后,治疗组血清ALT水平较安慰剂组显著改善。

  • [1]

    Fan J G, Wei L, Zhuang H, et al. Guidelines of prevention and treatment of nonalcoholic fatty liver disease (2018, China)[J]. J Dig Dis, 2019, 20(4): 163-173. doi: 10.1111/1751-2980.12685

    [2]

    Chalasani N, Younossi Z, Lavine J E, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American gastroenterological association, American association for the study of liver diseases, and American college of gastroenterology[J]. Gastroenterology, 2012, 142(7): 1592-1609. doi: 10.1053/j.gastro.2012.04.001

    [3]

    Fan J G, Kim S U, Wong V W. New trends on obesity and NAFLD in Asia[J]. J Hepatol, 2017, 67(4): 862-873. doi: 10.1016/j.jhep.2017.06.003

    [4]

    Perumpail B J, Khan M A, Yoo E R, et al. Clinical epidemiology and disease burden of nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2017, 23(47): 8263-8276. doi: 10.3748/wjg.v23.i47.8263

    [5]

    Byrne C D, Targher G. NAFLD: a multisystem disease[J]. J Hepatol, 2015, 62(1 Suppl): S47-S64. http://europepmc.org/abstract/MED/25920090

    [6]

    Lee T I, Kao Y H, Chen Y C, et al. Cardiac metabolism, inflammation, and peroxisome proliferator-activated receptors modulated by 1, 25-dihydroxyvitamin D3 in diabetic rats[J]. Int J Cardiol, 2014, 176(1): 151-157. doi: 10.1016/j.ijcard.2014.07.021

    [7]

    Wang H, Zhang Q, Chai Y, et al. 1, 25(OH)2D3 downregulates the Toll-like receptor 4-mediated inflammatory pathway and ameliorates liver injury in diabetic rats[J]. J Endocrinol Invest, 2015, 38(10): 1083-1091. doi: 10.1007/s40618-015-0287-6

    [8]

    Xin L L, Che B Z, Zhai B Z, et al. 1, 25-dihydroxy vitamin D3 attenuates the oxidative stress-mediated inflammation induced by PM2. 5via the p38/NF-κB/NLRP3 pathway[J]. Inflammation, 2019, 42(2): 702-713. doi: 10.1007/s10753-018-0928-y

    [9]

    Horiguchi M, Hirokawa M, Abe K, et al. Pulmonary administration of 1, 25-dihydroxyvitamin D3 to the lungs induces alveolar regeneration in a mouse model of chronic obstructive pulmonary disease[J]. J Control Release, 2016, 233: 191-197. doi: 10.1016/j.jconrel.2016.05.006

    [10]

    Afsal K, Harishankar M, Banurekha V V, et al. Effect of 1, 25-dihydroxy vitamin D3 on cathelicidin expression in patients with and without cavitary tuberculosis[J]. Tuberculosis (Edinb), 2014, 94(6): 599-605. doi: 10.1016/j.tube.2014.09.007

    [11]

    Huang J, Yang G Z, Huang Y Z, et al. 1, 25(OH)2D3 induced apoptosis of human hepatocellular carcinoma cells in vitro and inhibited their growth in a nude mouse xenograft model by regulating histone deacetylase 2[J]. Biochimie, 2018, 146: 28-34. doi: 10.1016/j.biochi.2017.11.012

    [12]

    Miyashita M, Koga K, Izumi G, et al. Effects of 1, 25-dihydroxy vitamin D3 on endometriosis[J]. J Clin Endocrinol Metab, 2016, 101(6): 2371-2379. doi: 10.1210/jc.2016-1515

    [13]

    Mukherjee D, Lahiry S, Thakur S, et al. Effect of 1, 25 dihydroxy vitamin D3 supplementation on pain relief in early rheumatoid arthritis[J]. J Family Med Prim Care, 2019, 8(2): 517-522. doi: 10.4103/jfmpc.jfmpc_446_18

    [14]

    Saeb S PhD, Azari H PhD, Mostafavi-Pour Z PhD, et al. 9-Cis-retinoic acid and 1, 25-dihydroxy vitamin D3 improve the differentiation of neural stem cells into oligodendrocytes through the inhibition of the notch and wnt signaling pathways[J]. Iran J Med Sci, 2018, 43(5): 523-532. http://www.ncbi.nlm.nih.gov/pubmed/30214105

    [15]

    Wang Z Y, Wang Y, Xu B X, et al. Vitamin D improves immune function in immunosuppressant mice induced by glucocorticoid[J]. Biomed Rep, 2017, 6(1): 120-124. doi: 10.3892/br.2016.817

    [16] 王蕾, 李校天, 张利, 等. 活性维生素D3联合LY294002体外抑制大鼠肝星状细胞增殖作用研究[J]. 实用肝脏病杂志, 2016, 19(2): 147-151. doi: 10.3969/j.issn.1672-5069.2016.02.006
    [17]

    Holick M F. Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis[J]. Am J Clin Nutr, 2004, 79(3): 362-371. doi: 10.1093/ajcn/79.3.362

    [18]

    Holick M F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention[J]. Rev Endocr Metab Disord, 2017, 18(2): 153-165. doi: 10.1007/s11154-017-9424-1

    [19]

    Jaruvongvanich V, Ahuja W, Sanguankeo A, et al. Vitamin D and histologic severity of nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Dig Liver Dis, 2017, 49(6): 618-622. doi: 10.1016/j.dld.2017.02.003

    [20]

    Patel Y A, Henao R, Moylan C A, et al. Vitamin D is not associated with severity in NAFLD: results of a paired clinical and gene expression profile analysis[J]. Am J Gastroenterol, 2016, 111(11): 1591-1598. doi: 10.1038/ajg.2016.406

    [21]

    Roth C L, Elfers C T, Figlewicz D P, et al. Vitamin D deficiency in obese rats exacerbates nonalcoholic fatty liver disease and increases hepatic resistin and Toll-like receptor activation[J]. Hepatology, 2012, 55(4): 1103-1111. doi: 10.1002/hep.24737

    [22]

    Sharma S S, Jangale N M, Harsulkar A M, et al. Chronic maternal calcium and 25-hydroxyvitamin D deficiency in Wistar rats programs abnormal hepatic gene expression leading to hepatic steatosis in female offspring[J]. J Nutr Biochem, 2017, 43: 36-46. doi: 10.1016/j.jnutbio.2017.01.008

    [23]

    Beilfuss A, Sowa J P, Sydor S, et al. Vitamin D counteracts fibrogenic TGF-β signalling in human hepatic stellate cells both receptor-dependently and independently[J]. Gut, 2015, 64(5): 791-799. doi: 10.1136/gutjnl-2014-307024

    [24]

    Nelson J E, Roth C L, Wilson L A, et al. Vitamin D deficiency is associated with increased risk of non-alcoholic steatohepatitis in adults with non-alcoholic fatty liver disease: possible role for MAPK and NF-κB[J]. Am J Gastroenterol, 2016, 111(6): 852-863. doi: 10.1038/ajg.2016.51

    [25]

    Park D, Kwon H, Oh S W, et al. Is vitamin D an independent risk factor of nonalcoholic fatty liver disease?: a cross-sectional study of the healthy population[J]. J Korean Med Sci, 2017, 32(1): 95-101. doi: 10.3346/jkms.2017.32.1.95

    [26]

    Wang D, Lin H D, Xia M F, et al. Vitamin D levels are inversely associated with liver fat content and risk of non-alcoholic fatty liver disease in a Chinese middle-aged and elderly population: the Shanghai Changfeng study[J]. PLoS One, 2016, 11(6): e0157515. doi: 10.1371/journal.pone.0157515

    [27]

    Targher G, Bertolini L, Scala L, et al. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease[J]. Nutr Metab Cardiovasc Dis, 2007, 17(7): 517-524. doi: 10.1016/j.numecd.2006.04.002

    [28]

    Barchetta I, Carotti S, Labbadia G, et al. Liver vitamin D receptor, CYP2R1, and CYP27A1 expression: relationship with liver histology and vitamin D3 levels in patients with nonalcoholic steatohepatitis or hepatitis C virus[J]. Hepatology, 2012, 56(6): 2180-2187. doi: 10.1002/hep.25930

    [29]

    Nobili V, Giorgio V, Liccardo D, et al. Vitamin D levels and liver histological alterations in children with nonalcoholic fatty liver disease[J]. Eur J Endocrinol, 2014, 170(4): 547-553. doi: 10.1530/EJE-13-0609

    [30]

    Manco M, Ciampalini P, Nobili V. Low levels of 25-hydroxyvitamin D(3) in children with biopsy-proven nonalcoholic fatty liver disease[J]. Hepatology, 2010, 51(6): 2229-2230. http://europepmc.org/abstract/med/20513013

    [31]

    Kim H S, Rotundo L, Kothari N, et al. Vitamin D is associated with severity and mortality of non-alcoholic fatty liver disease: A US population-based study[J]. J Clin Transl Hepatol, 2017, 5(3): 185-192. http://www.ncbi.nlm.nih.gov/pubmed/28936398

    [32]

    Cheung O, Sanyal A J. Abnormalities of lipid metabolism in nonalcoholic fatty liver disease[J]. Semin Liver Dis, 2008, 28(4): 351-359. doi: 10.1055/s-0028-1091979

    [33]

    Mansbach C M 2nd, Gorelick F. Development and physiological regulation of intestinal lipid absorption. Ⅱ. Dietary lipid absorption, complex lipid synthesis, and the intracellular packaging and secretion of chylomicrons[J]. Am J Physiol Gastrointest Liver Physiol, 2007, 293(4): G645-G650. doi: 10.1152/ajpgi.00299.2007

    [34]

    Buzzetti E, Pinzani M, Tsochatzis E A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048. doi: 10.1016/j.metabol.2015.12.012

    [35]

    Barbosa-da-Silva S, Souza-Mello V, Magliano D C, et al. Singular effects of PPAR agonists on nonalcoholic fatty liver disease of diet-induced obese mice[J]. Life Sci, 2015, 127: 73-81. doi: 10.1016/j.lfs.2015.02.003

    [36]

    Borges C C, Salles A F, Bringhenti I, et al. Vitamin D deficiency increases lipogenesis and reduces beta-oxidation in the liver of diet-induced obese mice[J]. J Nutr Sci Vitaminol, 2018, 64(2): 106-115. doi: 10.3177/jnsv.64.106

    [37]

    Kong J, Li Y C. Molecular mechanism of 1, 25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells[J]. Am J Physiol Endocrinol Metab, 2006, 290(5): E916-E924. doi: 10.1152/ajpendo.00410.2005

    [38]

    Kong M, Zhu L D, Bai L, et al. Vitamin D deficiency promotes nonalcoholic steatohepatitis through impaired enterohepatic circulation in animal model[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 307(9): G883-G893. doi: 10.1152/ajpgi.00427.2013

    [39]

    Kong M, Zhu L D, Bai L, et al. Vitamin D deficiency promotes nonalcoholic steatohepatitis through impaired enterohepatic circulation in animal model[J]. Am J Physiol Gastrointest Liver Physiol, 2014, 307(9): G883-G893. doi: 10.1152/ajpgi.00427.2013

    [40]

    Zhu C G, Liu Y X, Wang H, et al. Active form of vitamin D ameliorates non-alcoholic fatty liver disease by alleviating oxidative stress in a high-fat diet rat model[J]. Endocr J, 2017, 64(7): 663-673. doi: 10.1507/endocrj.EJ16-0542

    [41]

    Jahn D, Dorbath D, Kircher S, et al. Beneficial effects of vitamin D treatment in an obese mouse model of non-alcoholic steatohepatitis[J]. Nutrients, 2019, 11(1): E77. doi: 10.3390/nu11010077

    [42]

    Han H, Cui M, You X, et al. A role of 1, 25(OH)2D3 supplementation in rats with nonalcoholic steatohepatitis induced by choline-deficient diet[J]. Nutr Metab Cardiovasc Dis, 2015, 25(6): 556-561. doi: 10.1016/j.numecd.2015.02.011

    [43]

    Foroughi M, Maghsoudi Z, Askari G. The effect of vitamin D supplementation on blood sugar and different indices of insulin resistance in patients with non-alcoholic fatty liver disease (NAFLD)[J]. Iran J Nurs Midwifery Res, 2016, 21(1): 100-104. doi: 10.4103/1735-9066.174759

    [44]

    Sharifi N, Amani R, Hajiani E, et al. Does vitamin D improve liver enzymes, oxidative stress, and inflammatory biomarkers in adults with non-alcoholic fatty liver disease A randomized clinical trial[J]. Endocrine, 2014, 47(1): 70-80. doi: 10.1007/s12020-014-0336-5

    [45]

    Kitson M T, Pham A, Gordon A, et al. High-dose vitamin D supplementation and liver histology in NASH[J]. Gut, 2016, 65(4): 717-718. http://europepmc.org/abstract/MED/26294696

    [46]

    Geier A, Eichinger M, Stirnimann G, et al. Treatment of non-alcoholic steatohepatitis patients with vitamin D: a double-blinded, randomized, placebo-controlled pilot study[J]. Scand J Gastroenterol, 2018, 53(9): 1114-1120. doi: 10.1080/00365521.2018.1501091

  • 期刊类型引用(4)

    1. 李玉苓,邹东花,杨大伟. 血清25(OH)D_3及外周血维生素D受体水平与晚期肝细胞癌患者索拉非尼靶向治疗疗效及生存情况的关系. 检验医学与临床. 2024(21): 3111-3116 . 百度学术
    2. 王青青,商军锋,赵洪星. 妊娠期肝病患者外周血25(OH)D_3、HMGB1、miR-122表达与凝血功能的相关性. 中国肝脏病杂志(电子版). 2023(04): 66-72 . 百度学术
    3. 赵瀚东,詹丽. 维生素D对幽门螺旋杆菌感染治疗的研究进展. 甘肃科技纵横. 2021(08): 101-103 . 百度学术
    4. 白娜,杜萍萍. 血清25(OH)维生素D水平与原发性肝癌的相关性分析. 山西医药杂志. 2020(21): 2988-2990 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  186
  • HTML全文浏览量:  68
  • PDF下载量:  2
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-09-09
  • 录用日期:  2019-10-17
  • 网络出版日期:  2021-02-28
  • 发布日期:  2019-11-27

目录

/

返回文章
返回